首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines.   总被引:22,自引:4,他引:18       下载免费PDF全文
To investigate the physiological function of poly(ADP-ribose) polymerase (PARP), we used a gene targeting strategy to generate mice lacking a functional PARP gene. These PARP -/- mice were exquisitely sensitive to the monofunctional-alkylating agent N -methyl- N -nitrosourea (MNU) and gamma-irradiation. In this report, we have analysed the cause of this increased lethality using primary and/or spontaneously immortalized mouse embryonic fibroblasts (MEFs) derived from PARP -/- mice. We found that the lack of PARP renders cells significantly more sensitive to methylmethanesulfonate (MMS), causing cell growth retardation, G2/M accumulation and chromosome instability. An important delay in DNA strand-break resealing was observed following treatment with MMS. This severe DNA repair defect appears to be the primary cause for the observed cytoxicity of monofunctional-alkylating agents, leading to cell death occurring after G2/M arrest. Cell viability following MMS treatment could be fully restored after transient expression of the PARP gene. Altogether, these results unequivocally demonstrate that PARP is required for efficient base excision repair in vivo and strengthens the role of PARP as a survival factor following genotoxic stress.  相似文献   

2.
3.
Poly (ADP-ribose) polymerase (113 kDa; PARP-1) is a constitutive factor of the DNA damage surveillance network developed by the eukaryotic cell to cope with the numerous environmental and endogenous genotoxic agents. This enzyme recognizes and is activated by DNA strand breaks. This original property plays an essential role in the protection and processing of the DNA ends as they arise in DNA damage that triggers the base excision repair (BER) pathway. The generation, by homologous recombination, of three independent deficient mouse models have confirmed the caretaker function of PARP-1 in mammalian cells under genotoxic stress. Unexpectedly, the knockout strategy has revealed the instrumental role of PARP-1 in cell death after ischemia-reperfusion injury and in various inflammation process. Moreover, the residual PARP activity found in PARP-1 deficient cells has been recently attributed to a novel DNA damage-dependent poly ADP-ribose polymerase (62 kDa; PARP-2), another member of the expanding PARP family that, on the whole, appears to be involved in the genome protection. The present review summarizes the recent data obtained with the three PARP knockout mice in comparison with the chemical inhibitor approach.  相似文献   

4.
Horton JK  Wilson SH 《DNA Repair》2007,6(4):530-543
Single-base lesions in DNA are repaired predominantly by base excision repair (BER). DNA polymerase beta (pol beta) is the polymerase of choice in the preferred single-nucleotide BER pathway. The characteristic phenotype of mouse fibroblasts with a deletion of the pol beta gene is moderate hypersensitivity to monofunctional alkylating agents, e.g., methyl methanesulfonate (MMS). Increased sensitivity to MMS is also seen in the absence of pol beta partner proteins XRCC1 and PARP-1, and under conditions where BER efficiency is reduced by synthetic inhibitors. PARP activity plays a major role in protection against MMS-induced cytotoxicity, and cells treated with a combination of non-toxic concentrations of MMS and a PARP inhibitor undergo cell cycle arrest and die by a Chk1-dependent apoptotic pathway. Since BER-deficient cells and tumors are similarly hypersensitive to the clinically used chemotherapeutic methylating agent temozolomide, modulation of DNA damage-induced cell signaling pathways, as well as BER, are attractive targets for potentiating chemotherapy.  相似文献   

5.
To examine base excision repair (BER) capacity in the context of living cells, we developed and applied a plasmid-based reporter assay. Non-replicating plasmids containing unique DNA base lesions were designed to express luciferase only after lesion repair had occurred, and luciferase expression in transfected cells was measured continuously during a repair period of 14 h. Two types of DNA lesions were examined: uracil opposite T reflecting repair primarily by the single-nucleotide BER sub-pathway, and the abasic site analogue tetrahydrofuran (THF) opposite C reflecting repair by long-patch BER. We found that the repair capacity for uracil-DNA in wild type mouse fibroblasts was very strong, whereas the repair capacity for THF-DNA, although strong, was slightly weaker. Repair capacity in DNA polymerase β (Pol β) null cells for uracil-DNA and THF-DNA was reduced by approximately 15% and 20%, respectively, compared to that in wild type cells. In both cases, the repair deficiency was fully complemented in Pol β null cells expressing recombinant Pol β. The effect of inhibition of poly(ADP-ribose) polymerase (PARP) activity on repair capacity was examined by treatment of cells with the inhibitor 4-amino-1,8-naphthalimide (4-AN). PARP inhibition decreased the repair capacity for both lesions in wild type cells, and this reduction was to the same level as that seen in Pol β null cells. In contrast, 4-AN had no effect on repair in Pol β null cells. The results highlight that Pol β and PARP function in the same repair pathway, but also suggest that there is repair independent of both Pol β and PARP activities. Thus, before the BER capacity of a cell can be predicted or modulated, a better understanding of Pol β and PARP activity-independent BER pathways is required.  相似文献   

6.
Poly(ADP-ribosyl)ation, which is catalyzed by PARP family proteins, is one of the main reactions in the cell response to genomic DNA damage. Massive impact of DNA-damaging agents (such as oxidative stress and ionizing radiation) causes numerous breaks in DNA. In this case, the development of a fast cell response, which allows the genomic DNA integrity to be retained, may be more important than the repair by more accurate but long-term restoration of the DNA structure. This is the first study to show the possibility of eliminating DNA breaks through their PARP3-dependent mono(ADP-ribosyl)ation followed by ligation and repair of the formed ribo-AP sites by the base excision repair (BER) enzyme complex. Taken together, the results of the studies on ADP-ribosylation of DNA and the data obtained in this study suggest that PARP3 may be a component of the DNA break repair system involving the BER enzyme complex.  相似文献   

7.
Base excision repair (BER) is a primary mechanism for repair of base lesions in DNA such as those formed by exposure to the DNA methylating agent methyl methanesulfonate (MMS). Both DNA polymerase β (pol β)- and XRCC1-deficient mouse fibroblasts are hypersensitive to MMS. This is linked to a repair deficiency as measured by accumulation of strand breaks and poly(ADP-ribose) (PAR). The interaction between pol β and XRCC1 is important for recruitment of pol β to sites of DNA damage. Endogenous DNA damage can substitute for MMS-induced damage such that BER deficiency as a result of either pol β- or XRCC1-deletion is associated with sensitivity to PARP inhibitors. Pol β shRNA was used to knock down pol β in Xrcc1+/+ and Xrcc1−/− mouse fibroblasts. We determined whether pol β-mediated cellular resistance to MMS and PARP inhibitors resulted entirely from coordination with XRCC1 within the same BER sub-pathway. We find evidence for pol β-dependent cell survival independent of XRCC1 expression for both types of agents. The results suggest a role for pol β-dependent, XRCC1-independent repair. PAR immunofluorescence data are consistent with the hypothesis of a decrease in repair in both pol β knock down cell variants.  相似文献   

8.
Base excision repair (BER) represents the most important repair pathway of endogenous DNA lesions. Initially, a base damage is recognized, excised and a DNA single-strand break (SSB) intermediate forms. The SSB is then ligated, a process that employs proteins also involved in SSB repair, e.g. XRCC1, Ligase III and possibly PARP1. Here, we confirm the role of XRCC1 and PARP in direct SSB repair. Interestingly, we uncover a synthetic lethality between XRCC1 deficiency and PARP inhibition. We also treated cells with alkylating agent dimethyl sulfate (DMS) and monitored the SSB intermediates formed during BER. DMS-induced SSBs were quickly repaired in wild-type cells; while a rapid accumulation of SSBs was observed in cells where post-incision repair was blocked by a PARP inhibitor or by XRCC1 deficiency (EM9 cells). Interestingly, DMS-induced SSBs did not accumulate in PARP1 siRNA depleted cells, demonstrating that PARP1 is not required for efficient completion of BER. Based on these results we suggest no immediate role for PARP1 in BER, but that PARP inhibitors trap PARP on the SSB intermediate formed during BER. Unexpectedly, addition of PARP inhibitor 2 h after DMS treatment still increased SSB levels indicating ongoing repair even at this late time point.  相似文献   

9.
Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.  相似文献   

10.
DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. pombe mag1 mutants have only a slightly increased sensitivity to methylation damage, suggesting that Mag1-initiated BER plays a surprisingly minor role in alkylation resistance in this organism. We go on to show that other DNA repair pathways play a larger role than BER in alkylation resistance. Mutations in genes involved in nucleotide excision repair (rad13) and recombinational repair (rhp51) are much more alkylation sensitive than mag1 mutants. In addition, S. pombe mutant for the flap endonuclease rad2 gene, whose precise function in DNA repair is unclear, were also more alkylation sensitive than mag1 mutants. Further, mag1 and rad13 interact synergistically for alkylation resistance, and mag1 and rhp51 display a surprisingly complex genetic interaction. A model for the role of BER in the generation of alkylation-induced DNA strand breaks in S. pombe is discussed.  相似文献   

11.
In the present investigation, we report a previously unsuspected function of the tumor suppressor protein, APC (adenomatous polyposis coli), in the regulation of base excision repair (BER). We identified a proliferating cell nuclear antigen-interacting protein-like box sequence in APC that binds DNA polymerase beta and blocks DNA polymerase beta-mediated strand-displacement synthesis in long patch BER without affecting short patch BER. We further showed that the colon cancer cell line expressing the wild-type APC gene was more sensitive to a DNA-methylating agent due to decreased DNA repair by long patch BER than the cell line expressing the mutant APC gene lacking the proliferating cell nuclear antigen-interacting protein-like box. Experiments based on RNA interference showed that the wild-type APC gene expression is required for DNA methylation-induced sensitivity of colon cancer cells. Thus, APC may play a critical role in determining utilization of long versus short patch BER pathways and affect the susceptibility of colon cancer cells to carcinogenic and chemotherapeutic agents.  相似文献   

12.
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage.  相似文献   

13.
The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitochondrial-specific DNA base excision repair (BER) enzymes, namely EXOG and DNA polymerase gamma (Polγ), which under oxidative stress become poly(ADP-ribose)lated (PARylated). Interaction between mitochondrial BER enzymes was significantly affected in the presence of PARP1. Moreover, the repair of the oxidative-induced damage to the mitochondrial DNA in PARP1-depleted cells was found to be more robust compared to control counterpart. In addition, mitochondrial biogenesis was enhanced in PARP1-depleted cells, including mitochondrial DNA copy number and mitochondrial membrane potential. This observation was further confirmed by analysis of lung tissue isolated from WT and PARP1 KO mice. In summary, we conclude that mitochondrial PARP1, in opposite to nuclear PARP1, exerts a negative effect on several mitochondrial-specific transactions including the repair of the mitochondrial DNA.  相似文献   

14.
《Journal of molecular biology》2019,431(15):2655-2673
Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.  相似文献   

15.
16.
DNA polymerase beta (pol beta) is the major DNA polymerase involved in the base excision repair (BER) pathway in mammalian cells and, as a consequence, BER is severely compromised in cells lacking pol beta. Pol beta null (-/-) mouse embryos are not viable and pol beta null cells are hypersensitive to alkylating agents. Using RNA interference (RNAi) technology in mouse cells, we have reduced the pol beta protein and mRNA to undetectable levels. Pol beta knockdown cell lines display a pattern of hypersensitivity to DNA damaging agents similar to that observed in pol beta null cells. Generation of pol beta knock down cells makes it possible to combine the pol beta null phenotype with deficiencies in other DNA repair proteins, thereby helping to elucidate the role of pol beta and its interactions with other proteins in mammalian cells.  相似文献   

17.
18.
Base excision repair (BER) is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol β) is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol λ), was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases λ and β in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol β and pol λ. Neutral red viability assays demonstrated that pol λ and pol β double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol λ to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol λ and pol β interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.  相似文献   

19.
20.
Effects of exogenous proteins poly(ADP-ribose) polymerase-1 (PARP1) and its 24-kD proteolytic fragment (p24) on the repair of DNA duplexes containing a one nucleotide gap with furan phosphate or phosphate group at the 5'-end of the downstream primer were studied in bovine testis nuclear extract. These damaged DNAs are repaired by the long-patch or short-patch subpathways of base excision repair (BER), respectively. Exogenous PARP1 and p24 decreased the efficiency of gap filling DNA synthesis for both duplexes, but did not influence the ligation stage in the repair of DNA duplex by the short-patch subpathway. Under the same conditions, these proteins inhibited strand-displacement DNA synthesis and decreased the efficiency of the flap endonuclease 1 (FEN1)-catalyzed endonuclease reaction in the nuclear extract, blocking repair of DNA duplex by the long-patch subpathway. Addition of exogenous PARP1 and p24 also reduced the efficiency of UV light crosslinking of extract BER proteins to the photoreactive BER intermediates carrying a nick. Thus, PARP1 and p24 interact with DNA intermediates of BER and compete with nuclear extract proteins for binding to DNA. The interaction of PARP1 and p24 with DNA intermediates of the long-patch subpathway of BER resulted in inhibition of subsequent stages of the repair mediated by this mechanism. However, on recovery of the intact structure of DNA duplex by the short-patch subpathway, PARP1 and p24 suppressed the repair of the one nucleotide gap less efficiently and failed to influence the final stage of the repair, ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号