首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

2.
3.

Background

Amphibians have the remarkable ability to regenerate missing body parts. After complete removal of the eye lens, the dorsal but not the ventral iris will transdifferentiate to regenerate an exact replica of the lost lens. We used reverse-phase nano-liquid chromatography followed by mass spectrometry to detect protein concentrations in dorsal and ventral iris 0, 4, and 8 days post-lentectomy. We performed gene expression comparisons between regeneration and intact timepoints as well as between dorsal and ventral iris.

Results

Our analysis revealed gene expression patterns associated with the ability of the dorsal iris for transdifferentiation and lens regeneration. Proteins regulating gene expression and various metabolic processes were enriched in regeneration timepoints. Proteins involved in extracellular matrix, gene expression, and DNA-associated functions like DNA repair formed a regeneration-related protein network and were all up-regulated in the dorsal iris. In addition, we investigated protein concentrations in cultured dorsal (transdifferentiation-competent) and ventral (transdifferentiation-incompetent) iris pigmented epithelial (IPE) cells. Our comparative analysis revealed that the ability of dorsal IPE cells to keep memory of their tissue of origin and transdifferentiation is associated with the expression of proteins that specify the dorso-ventral axis of the eye as well as with proteins found highly expressed in regeneration timepoints, especially 8 days post-lentectomy.

Conclusions

The study deepens our understanding in the mechanism of regeneration by providing protein networks and pathways that participate in the process.
  相似文献   

4.
The mechanisms of transdifferentiation of iris epithelial cells of Rana temporaria (Anura) in culture depending on influences from different sources were studied. In terminally differentiated iris cells, the process of transdifferentiation is initiated by dedifferentiation. Melanosomes are shed from iris cells due to cell surface activity. After depigmentation, iris epithelial cells become capable of proliferating and competent to react to the influences of various exogenous factors. Under the influence of retinal factors secreted by lentectomized tadpole eyes, both dorsal and ventral irises are converted to neural retina. Under the influence of factors from eye vesicles, the irises are converted to neural retina as well. Similar results were obtained in transfilter experiments, in which a 3-day period of transfilter interaction between the irises and eye vesicles ensured depigmentation of the iris followed by transdifferentiation into complete NR with visual receptor. Lentoid formation occurred under the influence of adult frog lens epithelium. Immunofluorescent analysis confirmed the lens nature of the lentoids. In control experiments under the conditions of the tadpole eye orbit, in which programming influences were absent, iris epithelial cells remained unaffected.
The problem of true cell-reprogramming to new differentiation in contrast to expression of inherent properties of the iris epithelial cells is discussed.  相似文献   

5.
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells.In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises.The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.  相似文献   

6.
Salamanders like newt and axolotl possess the ability to regenerate many of its lost body parts such as limbs, the tail with spinal cord, eye, brain, heart, the jaw 1. Specifically, newts are unique for its lens regeneration capability. Upon lens removal, IPE cells of the dorsal iris transdifferentiate to lens cells and eventually form a new lens in about a month 2,3. This property of regeneration is never exhibited by the ventral iris cells. The regeneration potential of the iris cells can be studied by making transplants of the in vitro cultured IPE cells. For the culture, the dorsal and ventral iris cells are first isolated from the eye and cultured separately for a time period of 2 weeks (Figure 1). These cultured cells are reaggregated and implanted back to the newt eye. Past studies have shown that the dorsal reaggregate maintains its lens forming capacity whereas the ventral aggregate does not form a lens, recapitulating, thus the in vivo process (Figure 2) 4,5. This system of determining regeneration potential of dorsal and ventral iris cells is very useful in studying the role of genes and proteins involved in lens regeneration.  相似文献   

7.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

8.
9.
Cell cycle parameters were estimated in primary cultures of iris epithelial cells, obtained from explanted dorsal and ventral irises of adult newts (Notophthalmus viridescens). No significant difference was found between parameters of dorsal and ventral iris epithelial cell cultures. Compared with the total cell cycle time of iris epithelial cells in situ in the pathway of conversion, that of cultured iris epithelial cells is longer by a factor of 1.88. The results support the working hypothesis that the basic requirement for conversion of iris epithelial cells into lens cells is the passage of a definite number of cell cycles instead of the inductive influence of neural retina.  相似文献   

10.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

11.
To examine underlying mechanisms of urodele lens regeneration we have employed a proteomic analysis of 650 proteins involved in several signaling pathways. We compared expression of these proteins between the regeneration-competent dorsal iris and the regeneration-incompetent ventral iris in the newt. After a series of screenings we selected several proteins to evaluate their expression quantitatively on immunoblots. We then used these selected proteins to compare their expression between the dorsal iris of the newt and the iris of the axolotl, another urodele, which does not regenerate the lens. In the newt we find that most proteins are expressed in both dorsal and ventral iris, even though there is differential regulation. Moreover, several of these proteins are expressed in the axolotl iris as well and for some of them their expression is consistent with the regeneration potential.  相似文献   

12.
Total regeneration of experimentally excised lens from the dorsal part of the iris-pigmented epithelium of newts has been a key model of tissue regeneration via cells originating from a foreign tissue. Due to the strict spatial restriction of the lens origin in the newt iris, it has often been assumed that only the dorsal iris cells are endowed with an intrinsic potential to give rise to lens tissues. However, our reinvestigation of the process revealed completely different mechanisms underlying lens regeneration and its spatial restriction, comprising the following two steps: (i) Fibroblast growth factor (FGF) 2-dependent proliferation of iris-pigmented epithelium and activation of early lens genes ( Pax6, Sox2, MafB ) over the entire circumference of the iris; and (ii) dorsal iris-restricted activation of the canonical Wnt signals (involving Wnt2b and Frizzeld4) that leads to localized expression of late lens genes ( Prox1, Sox1, β-crystallin ). Injection of FGF2 into normal eyes specifically elicited the second lens development from the dorsal iris, and the administration of recombinant Wnt3a to the cultured iris-pigmented epithelium caused even ventral iris-derived lens development. Thus, it is concluded that the regulation of FGF2 and Wnt signals is a determinative of the iris-derived lens regeneration in the newt eye.  相似文献   

13.
In this paper we describe the basic process of lens regeneration in adult newt and we pinpoint several issues in order to obtain a comprehensive understanding of this ability, which is restricted to only a few salamanders. The process is characterized by dynamic changes in the organization of the extracellular matrix in the eye, re-entering of the cell cycle and dedifferentiation of the dorsal iris pigment epithelial cells. The ability of the dorsal iris to contribute to lens regeneration is discussed in light of iris-specific gene expression as well as in relation to factors present in the eye.  相似文献   

14.
The anterior lobe of the pituitary gland can stimulate lens regeneration from the dorsal iris in the newt Notophthalmus viridescens. We have studied the effect of pituitary hormone preparations on this process. Dorsal irises were cultured for 20 days in diluted Medium 199 supplemented with 10% fetal calf serum. Bovine thyrotropin TSH-B8 at concentrations of 30 to 3000 μg/ml significantly stimulated lens regeneration in these dorsal irises. Well-developed lenses, up to stage 9, were formed, in which γ-crystallin, a protein specific for lens fibers of young lenses, was detected by immunofluorescence. Additionally, the mitotic index was 5.5 times elevated in these explants when compared to their controls. Lutropin LH-B10 at concentrations of 30 to 3000 μg/ml, prolactin PRL-B4 at concentrations of 23 to 1600 μg/ml, and porcine adrenocorticotropin ACTH-6002 at concentrations of 3 to 300 μg/ml did not stimulate lens regeneration. A weak stimulation of lens formation was observed in iris cultures with 2700 μg/ml of follitropin FSH-B1 or 3000 μg/ml somatotropin GH-B18, but not at concentrations of 30 μg/ml. Our results suggest that the inherent ability of the dorsal iris to form lens can be activated by the bovine thyrotropin preparation TSH-B8.  相似文献   

15.
In Wolffian lens regeneration, lentectomized newt eye can produce a new lens from the dorsal marginal iris, but the ventral iris has never shown such capabilities. To investigate the difference of lens regenerating potency between dorsal and ventral iris epithelium at the cellular level, a transplantation system using cell reaggregates was developed. Two methods were devised for preparing the reaggregates from pigmented iris epithelial cells. One was rotating cells in an agar-coated multiplate on a gyratory shaker and the other was incubating cells in a microcentrifuge tube after slight centrifugation. Reaggregates made of dorsal iris cells that had been completely dissociated into single cells were phenotypically transformed into a lens when placed in the pupillary region of the lentectomized host eye. None of the ventral reaggregates produced a lens. Even dorsal reaggregates could not transdifferentiate into lens when they were placed away from the pupil. The produced lenses from the reaggregates were morphologically and immunohistochemically identified. To obtain evidence whether produced lenses really originated from singly dissociated cells, we labeled dissociated cells with a fluorescent dye (PKH26) before reaggregate formation and then traced it in the produced lens.  相似文献   

16.
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.  相似文献   

17.
To try to understand the mechanism of the dedifferentiation process which occurs during metaplastic transformation of iris epithelial cells into lens cells in newt lens regeneration, the activity of N -acetylglucosaminidase in iris and iris epithelium was studied as a function of time after lentectomy. The activity was found to increase during the dedifferentiation phase of the iris epithelium. The dorsal iris, where definite dedifferentiation occurs side by side with incomplete dedifferentiation, shows significantly greater enhancement of the activity than the ventral iris, where only incomplete dedifferentiation takes place. When the cells complete dedifferentiation and engage in redifferentiation into lens cells, the level of activity drops, approaching that of the normal lens. Evidence is also presented for release of the enzyme into the ocular fluid during dedifferentiation. The possibility that the enzyme is involved in surface alterations of iris epithelial ceils engaged in dedifferentiation is discussed.  相似文献   

18.
The localization of a lens forming potency in the iris epithelium was studied by autoradiographic analysis of the distribution of 3H-thymidine labelled cells to be participated in lens regeneration in newts. DNA synthesis started from the dorsal portion of the iris epithelium around 4 days after lentectomy. 5 days after lentectomy, a large number of labelled cells were mostly found in the dorsal sector, showing strong contrast to the ventral and lateral sectors of iris, which contained a few labelled cells. The labelled index (the number of labelled cells/the number of cells in the definite pigmented area of the iris epithelium) of the dorsal sector attained the highest value, 29.7 ± 2.35, on day 7 after lentectomy, and dropped temporarily. This was followed by the second peak on day 12. The dorso-ventral ratio of the labelled index reached to the highest value, 6.87 ± 0.67, on day 5. This ratio decreased rapidly after the completion of a lens rudiment, and it became about 1. In “chase” experiments by diluting the radio-isotope with excess cold thymidine, it was obviously shown that most of the cells labelled with the radio-isotope and distributed in the dorsal marginal iris 5 days after lentectomy participated in the formation of a lens regenerate during the period of chasing. From these results, the following conclusion was drawn. The iris epithelium consists of at least 2 different cell populations; one is capable of transformation into lens cells and is distributed mostly in the dorsal portion of the iris epithelium, while the other has no potency for transformation and is able to grow to compensate a loss of the dorsal marginal cells which transformed into lens cells during the process of lens regeneration.  相似文献   

19.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

20.

Background

Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation.

Methodology/Principal Findings

We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.

Conclusion/Significance

The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells. On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide new insights on their function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号