首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the probiotic properties of the fermented vegetable derived lactic acid bacterium, L. plantarum. L. plantarum 10hk2 showed antibacterial activity against pathogenic bacteria and immunomodulating effects on murine macrophage cell lines. RAW 264.7 cells stimulated with viable cells of this probiotic strain increased the amounts of pro‐inflammatory mediators such as IL‐1β, IL‐6 and TNF‐α, as well as the anti‐inflammatory mediator, IL‐10. ICR mice fed with viable cells of L. plantarum 10hk2 had reduced numbers of enteric Salmonella and Shigella species in comparison to controls from 2 weeks after supplementation, and this effect was observed for up to 4 weeks. The findings of this study suggest that this specific lactic acid bacterial strain, which is derived from vegetable fermentation, holds great promise for use in probiotics and as a food additive since it can reduce the number of some pathogenic bacteria through production of lactic acids.  相似文献   

2.
The paraneoplastic syndrome of cachexia is considered a degenerative chronic inflammatory disease, being deeply related to the increase of pro‐inflammatory factors, especially tumour necrosis factor alpha (TNF‐α). It is known that the adipose tissue is affected by cachexia and contributing with the secretion of pro‐inflammatory factors which reach the adjacent tissues and the circulation. The effect of pro‐inflammatory factors is balanced by the effect of anti‐inflammatory factors, such as interleukin 10 (IL‐10). The IL‐10/TNF‐α ratio has been recently postulated as a marker for the assessment of the degree of inflammation, which correlates with disease‐associated morbidity and mortality. In order to counteract inflammation in chronic disease, our group has currently adopted chronic endurance exercise in models of cancer cachexia and chronic heart failure. Since it is clear that white adipose tissue is strongly implicated in the secretion of both pro‐ and anti‐inflammatory factors in disease, we chose to address its contribution to cachexia‐related inflammation and the effect of endurance training on the capacity of cytokine expression and secretion by this tissue. Our results show an enhancement of IL‐10 adipose tissue content, and increased IL‐10/TNF‐α ratio induced by endurance training. The mechanisms are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Researchers interested in ecological immunology face substantial methodological problems: 1) most immunological approaches are difficult to perform in free‐living animals, 2) in some of the applicable methods the immunological background of the test remains unclear. The latter is also true for the phytohaemagglutinin (PHA) skin‐swelling test, a trait of cell‐mediated immunity commonly measured in ecology. A lack of direct evidence documenting the immunological processes in the tissue limits our understanding of the mechanism triggering the response to PHA. Understanding of this mechanism is, nonetheless, crucial for us to uncover the nature of ecological costs and benefits of investments into the response. As knowledge of cytokine signalling in the tissue may clarify the response mechanism, in our study we investigated the association between the PHA‐induced skin‐swelling and tissue cytokine expression in males of grey partridge Perdix perdix. In PHA‐challenged birds we assessed expression of nine cytokines (IL‐1β, IL‐2, IL‐4, IL‐6, IL‐10, IL‐12, IL‐17, TGF‐β, IFN‐γ) in wing‐web skin during an early stage of the immune response. We examined the relationship between the magnitude of tissue swelling and cytokine expression. Contrary to some earlier expectations we did not find any differential expression of T‐cell growth factor, IL‐2, in the tissue. Hence, T‐cell proliferation at the time of the swelling measurement is unlikely. We detected differential expression in Th17 pro‐inflammatory (IL‐1β, IL‐6) and anti‐inflammatory (TGF‐β) cytokines. The PHA‐induced swelling response was only weakly linked to the expression of TGF‐β. We also found relationships between the PHA‐induced swelling response and phenotypic traits of the birds; the PHA swelling was positively associated with the extent of melanin‐based breast ornamentation and negatively related to body size. Our results might suggest that variation in swelling is influenced by total numbers of responding cells rather than by differences in signalling. Moreover, we revealed significant correlations in expression of IL‐1β, IL‐6 and TGF‐β. These findings are the first to show on the molecular level that the PHA skin‐swelling test actually measures inflammation process which is part of innate immune defence and not the adaptive immune response (as assumed if the test was the reflection of T‐cell proliferation).  相似文献   

4.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Aged mice exhibit ~ 5–10‐fold increases in an ordinarily minor CD21/35? CD23? mature B‐cell subset termed age‐associated B cells (ABCs). ABCs from old, but not young, mice induce apoptosis in pro‐B cells directly through secretion of TNFα. In addition, aged ABCs, via TNFα, stimulate bone marrow cells to suppress pro‐B‐cell growth. ABC effects can be prevented by the anti‐inflammatory cytokine IL‐10. Notably, CD21/35+ CD23+ follicular (FO) splenic and FO‐like recirculating bone marrow B cells in both young and aged mice contain a subpopulation that produces IL‐10. Unlike young adult FO B cells, old FO B cells also produce TNFα; however, secretion of IL‐10 within this B‐cell population ameliorates the TNFα‐mediated effects on B‐cell precursors. Loss of B‐cell precursors in the bone marrow of old mice in vivo was significantly associated with increased ABC relative to recirculating FO‐like B cells. Adoptive transfer of aged ABC into RAG‐2 KO recipients resulted in significant losses of pro‐B cells within the bone marrow. These results suggest that alterations in B‐cell composition during old age, in particular, the increase in ABC within the B‐cell compartments, contribute to a pro‐inflammatory environment within the bone marrow. This provides a mechanism of inappropriate B‐cell ‘feedback’ that promotes down‐regulation of B lymphopoiesis in old age.  相似文献   

6.
Microglia rapidly respond to CNS injury yet the mechanisms leading to their activation and inactivation remain poorly defined. In particular, few studies have established how interactions among inflammatory mediators affect the innate immune response of microglia. To begin to understand the hierarchy of cytokine signalling we examined the effects of several cytokines on purified newborn and adult rat microglia in vitro, and we have examined the microglial response to injury in mice deficient in the IL‐1 type 1 receptor (IL‐1R1). Using several indices of activation, we find that IL‐1β, TNF‐α, and IL‐6 are potent microglial activators. By contrast, TGF‐β1 did not activate the cells and when TGFβ1 was administered prior to IL‐1β, it blocked the effects of IL‐1β. However, TGFβ1 was ineffective in antagonizing IL‐6. In null mice lacking the IL‐1R1, microglia inefficiently responded to injury, and IL‐6 induction was severely curtailed. These data establish a model of hierarchical signalling, whereby constitutive expression of TGF‐β1 in the CNS maintains microglia in a resting state. IL‐1, while an important microglial activator, is modifiable, whereas, the downstream cytokine, IL‐6, is a strong stimulus that is unaffected by other modifiers of the innate immune response. Acknowledgements: Supported by NMSS award #RG 3837.  相似文献   

7.
Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin‐10 (IL‐10) gene regulates the production capacities of IL‐10 and tumour necrosis factor‐α (TNF‐α). In rural Ghana, IL‐10 gene variants associated with different production capacities of IL‐10 and TNF‐α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL‐10 gene, production capacities of IL‐10 and TNF‐α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro‐inflammatory haplotypes associated with low IL‐10 production capacity and anti‐inflammatory haplotypes with high IL‐10 production capacity. We found that distinct haplotypes of the IL‐10 gene associated with handgrip strength. A pro‐inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (= 0.015). An anti‐inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (= 0.006). In conclusion, variants of the IL‐10 gene contributing to a pro‐inflammatory cytokine response associate with higher muscle strength, whereas those with anti‐inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL‐10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases.  相似文献   

8.
Skeletal muscle is the source of pro‐ and anti‐inflammatory cytokines, and recently, it has been recognized as an important source of interleukin‐6 (IL‐6). Acute physical exercise is known to induce a pro‐inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro‐ and anti‐inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL‐6, TNF‐α, IL‐1β and IL‐10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week?1 for 8 weeks (60% VO2max). Detection of IL‐6, TNF‐α, IL‐1β and IL‐10 protein expression was carried out by ELISA. We found decreased expression of IL‐1β, IL‐6, TNF‐α and IL‐10 (28%, 27%, 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL‐1β, TNF‐α and IL‐10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL‐6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8‐week moderate‐intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Objective: Obesity is associated with elevated oxidative stress and low‐grade systemic inflammation. We have demonstrated recently that 1α,25‐(OH)2‐D3 promotes reactive oxygen species production in cultured adipocytes, whereas suppression of 1α,25‐(OH)2‐D3 by increasing dietary calcium down‐regulates diet‐induced oxidative stress in aP2‐agouti transgenic mice. However, whether the anti‐obesity effect of dietary calcium plays a role in regulation of obesity‐associated inflammation is not clear. Research Methods and Procedures: We investigated the role of dietary calcium in the regulation of inflammatory cytokine production in aP2‐agouti transgenic mice fed low‐ and high‐calcium obesigenic diets and in the modulation of cytokine production by 1α,25‐(OH)2‐D3 in cultured murine and human adipocytes. Results: The high‐calcium diet inhibited the expression of pro‐inflammatory factors tumor necrosis factor α and interleukin (IL)‐6 by 64% and 51%, respectively (p < 0.001), in visceral fat, stimulated the expression of the anti‐inflammatory factors IL‐15 and adiponectin by 52% (p = 0.001) and 54% (p = 0.025), respectively, in visceral fat, and induced a 2‐fold increase in IL‐15 expression in soleus muscle (p = 0.01) compared with litter mate controls on a low‐calcium diet. 1α,25‐(OH)2‐D3 also markedly stimulated the expression of tumor necrosis factor α (p < 0.001) and IL‐6 (p = 0.016) in differentiated 3T3‐L1 adipocytes and increased IL‐6 (p = 0.004) and IL‐8 (p < 0.001) production in differentiated human adipocytes. These effects were blocked by calcium channel antagonism with nifedipine. Discussion: These data demonstrate that 1α,25‐(OH)2‐D3 favors inflammatory cytokine expression and inhibits anti‐inflammatory cytokine expression; accordingly, suppression of 1α,25‐(OH)2‐D3 by dietary calcium inhibits adipocyte‐derived inflammation associated with obesity.  相似文献   

11.
Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water‐soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro‐fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO‐associated T cell and macrophage infiltration and induction of pro‐inflammatory cytokines, such as TNF‐α and IL‐1β. In cultured mouse proximal tubule cells, NAM blocked TGF–β‐induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF‐β. NAM also suppressed the expression of pro‐inflammatory cytokines (eg MCP‐1 and IL‐1β) during TGF‐β treatment of these cells. Collectively, the results demonstrate an anti‐fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.  相似文献   

12.
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H2) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H2 inhalation on pressure ulcer and the underlying mechanisms. H2 inhalation significantly reduced wound area, 8‐oxo‐dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up‐regulating expression of Nrf2 and its downstream components in wound tissue and/or H2O2‐treated endothelia. Meanwhile, H2 inhibited the overexpression of MCP‐1, E‐selectin, P‐selectin and ICAM‐1 in oxidant‐induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF‐α, IL‐1, IL‐6 and IL‐8) production in the wound. Furthermore, H2 promoted the expression of pro‐healing factors (IL‐22, TGF‐β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti‐inflammatory, pro‐healing actions.  相似文献   

13.
Differences in lipid metabolism associate with age‐related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro‐inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age‐associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly‐ and mono‐unsaturated FAs increase with age. Circulating TNF‐α and IL‐6 concentrations increased with age, whereas IL‐10 and TGF‐β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF‐β1 concentrations, and higher C16:0 were associated with higher TNF‐α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro‐inflammatory cytokines in response to phorbol myristate acetate‐induced differentiation through ceramide‐dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro‐resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti‐inflammatory macrophages through metabolic reprogramming.  相似文献   

14.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


15.
Acetate supplementation increases brain acetyl‐CoA and histone acetylation and reduces lipopolysaccharide (LPS)‐induced neuroglial activation and interleukin (IL)‐1β expression in vivo. To determine how acetate imparts these properties, we tested the hypothesis that acetate metabolism reduces inflammatory signaling in microglia. To test this, we measured the effect acetate treatment had on cytokine expression, mitogen‐activated protein kinase (MAPK) signaling, histone H3 at lysine 9 acetylation, and alterations of nuclear factor‐kappa B (NF‐κB) in primary and BV‐2 cultured microglia. We found that treatment induced H3K9 hyperacetylation and reversed LPS‐induced H3K9 hypoacetylation similar to that found in vivo. LPS also increased IL‐1β, IL‐6, and tumor necrosis factor‐alpha (TNF‐α) mRNA and protein, whereas treatment returned the protein to control levels and only partially attenuated IL‐6 mRNA. In contrast, treatment increased mRNA levels of transforming growth factor‐β1 (TGF‐β1) and both IL‐4 mRNA and protein. LPS increased p38 MAPK and JNK phosphorylation at 4 and 2–4 h, respectively, whereas treatment reduced p38 MAPK and JNK phosphorylation only at 2 h. In addition, treatment reversed the LPS‐induced elevation of NF‐κB p65 protein and phosphorylation at serine 468 and induced acetylation at lysine 310. These data suggest that acetate metabolism reduces inflammatory signaling and alters histone and non‐histone protein acetylation.  相似文献   

16.
Bawei Longzuan granule (BLG) is a representative Zhuang medicine preparation. The present work aims to characterize the chemical constituents of BLG and evaluate its anti‐arthritic activity. The major chemical constituents of BLG were tentatively identified by ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS), which revealed the presence of some alkaloids (e. g., magnoflorine, sinomenine and nitidine) and flavonoids (e. g., hesperidin, diosmin and sinensetin) that may be partly responsible for the anti‐arthritic effect of BLG. In addition, the collagen‐induced arthritis (CIA) model in rats was induced by intradermal injection of bovine collagen‐II in complete Freund's adjuvant at the base of tail. The CIA rats received oral administration of BLG (1.25, 2.5 and 5 g/kg) for 30 days. Then, various indicators were determined to evaluate its anti‐arthritic activity, including paw swelling, arthritic score, body weight, knee joint pathology, thymus index and spleen index. Additionally, the serum levels of tumor necrosis factor (TNF)‐α, interferon (IFN)‐γ, interleukin (IL)‐1β, IL‐6, IL‐4 and IL‐10 were measured to determine the underlying mechanisms. The results showed that BLG efficiently ameliorated the severity of arthritis in CIA rats by decreasing paw swelling and arthritis score and improving the histological lesions of knee joint. Moreover, the serum levels of several pro‐inflammatory cytokines (i. e., IL‐1β, TNF‐α, IL‐6 and IFN‐γ) were downregulated, whereas two anti‐inflammatory factors (i. e., IL‐4 and IL‐10) were upregulated after BLG administration. These results indicated that BLG possessed promising therapeutic effect on collagen‐induced arthritis by inhibiting inflammatory responses. BLG can be used as a complementary or alternative traditional medicine to treat rheumatoid arthritis.  相似文献   

17.
Vibrio parahaemolyticus is the most common cause of bacterial, seafood‐related illness in the USA. Currently, there is a dearth of published reports regarding immunity to infection with this pathogen. Here, production of both pro‐ and anti‐inflammatory cytokines by V. parahaemolyticus‐infected RAW 264.7 murine macrophages was studied. It was determined that this infection results in increased concentrations of IL‐1α, IL‐6, TNF‐α and IL‐10. Additionally, decreases in cell surface TLR2 and TLR4 and increases in T‐cell co‐stimulatory molecules CD40 and CD86 were discovered. The data presented here begin to identify the immune variables required to eliminate V. parahaemolyticus from infected host tissues.  相似文献   

18.
Induction of mammalian heme oxygenase (HO)‐1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO‐like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho‐like molecules suppress inflammatory immune responses through release of CO. According to real‐time PCR, exposure of mice to CO results in changes in enteric bacterial composition and increases E. coli 16S and chuS DNA. Moreover, the severity of experimental colitis correlates positively with E. coli chuS expression in IL‐10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co‐culture of chuS‐overexpressing E. coli with bone marrow‐derived macrophages resulted in less IL‐12p40 and greater IL‐10 secretion than in wild‐type or chuS‐deficient E. coli. Mice infected with chuS‐overexpressing E. coli have more hepatic CO and less serum IL‐12 p40 than mice infected with chuS‐deficient E. coli. Thus, CO alters the composition of the commensal intestinal microbiota and expands populations of E. coli that harbor the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial HO‐like molecules and bacteria‐derived CO may represent novel targets for therapeutic intervention in inflammatory conditions.  相似文献   

19.
Indoleamine 2,3‐dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal‐transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor‐β (TGF‐β), an event that requires the non‐canonical NF‐κB pathway and induces long‐lasting IDO1 expression and autocrine TGF‐β production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non‐obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF‐β failed to activate IDO1 signalling function as well as up‐regulate IDO1 expression in NOD pDCs. Moreover, TGF‐β‐treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF‐β treatment resulted in activation of the Ido1 promoter and induction of non‐canonical NF‐κB and TGF‐β, as well as decreased production of the pro‐inflammatory cytokines, interleukin 6 (IL‐6) and tumour necrosis factor‐α (TNF‐α). Overexpression of IDO1 in TGF‐β‐treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic β‐cell auto‐antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.  相似文献   

20.
The impact of oral commensal and pathogenic bacteria on peri‐implant mucosa is not well understood, despite the high prevalence of peri‐implant infections. Hence, we investigated responses of the peri‐implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri‐implant mucosa‐biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri‐implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin‐6 (IL‐6), interleukin‐8 (CXCL8), and monocyte chemoattractant protein‐1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor‐alpha (TNF‐α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri‐implant mucosa‐biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri‐implant disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号