首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The composition of genetic variation in a population or species is shaped by the number of events that led to the founding of the group. We consider a neutral coalescent model of two populations, where a derived population is founded as an offshoot of an ancestral population. For a given locus, using both recursive and nonrecursive approaches, we compute the probability distribution of the number of genetic founding lineages that have given rise to the derived population. This number of genetic founding lineages is defined as the number of ancestral individuals that contributed at the locus to the present-day derived population, and is formulated in terms of interspecific coalescence events. The effects of sample size and divergence time on the probability distribution of the number of founding lineages are studied in detail. For 99.99% of the loci in the derived population to each have one founding lineage, the two populations must be separated for 9.9N generations. However, only approximately 0.87N generations must pass since divergence for 99.99% of the loci to have <6 founding lineages. Our results are useful as a prior expectation on the number of founding lineages in scenarios that involve the evolution of one population from the splitting of an ancestral group, such as in the colonization of islands, the formation of polyploid species, and the domestication of crops and livestock from wild ancestors.  相似文献   

2.
Probabilities of monophyly, paraphyly, and polyphyly of two-species gene genealogies are computed for modest sample sizes and compared for two different Λ coalescent processes. Coalescent processes belonging to the Λ coalescent family admit asynchronous multiple mergers of active ancestral lineages. Assigning a timescale to the time of divergence becomes a central issue when different populations have different coalescent processes running on different timescales. Clade probabilities in single populations are also computed, which can be useful for testing for taxonomic distinctiveness of an observed set of monophyletic lineages. The coalescence rates of multiple merger coalescent processes are functions of coalescent parameters. The effect of coalescent parameters on the probabilities studied depends on the coalescent process, and if the population is ancestral or derived. The probability of reciprocal monophyly tends to be somewhat lower, when associated with a Λ coalescent, under the null hypothesis that two groups come from the same population. However, even for fairly recent divergence times, the probability of monophyly tends to be higher as a function of the number of generations for coalescent processes that admit multiple mergers, and is sensitive to the parameter of one of the example processes.  相似文献   

3.
Matsen FA  Wakeley J 《Genetics》2006,172(1):701-708
In this article we apply some graph-theoretic results to the study of coalescence in a structured population with migration. The graph is the pattern of migration among subpopulations, or demes, and we use the theory of random walks on graphs to characterize the ease with which ancestral lineages can traverse the habitat in a series of migration events. We identify conditions under which the coalescent process in populations with restricted migration, such that individuals cannot traverse the habitat freely in a single migration event, nonetheless becomes identical to the coalescent process in the island migration model in the limit as the number of demes tends to infinity. Specifically, we first note that a sequence of symmetric graphs with Diaconis-Stroock constant bounded above has an unstructured Kingman-type coalescent in the limit for a sample of size two from two different demes. We then show that circular and toroidal models with long-range but restricted migration have an upper bound on this constant and so have an unstructured-migration coalescent in the limit. We investigate the rate of convergence to this limit using simulations.  相似文献   

4.
Hua Chen  Kun Chen 《Genetics》2013,194(3):721-736
The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages nAn(t) follows a Poisson distribution, and as mn, n(n ? 1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.  相似文献   

5.
Abstract We present moments and likelihood methods that estimate a DNA substitution rate from a group of closely related sister species pairs separated at an assumed time, and we test these methods with simulations. The methods also estimate ancestral population size and can test whether there is a significant difference among the ancestral population sizes of the sister species pairs. Estimates presented in the literature often ignore the ancestral coalescent prior to speciation and therefore should be biased upward. The simulations show that both methods yield accurate estimates given sample sizes of five or more species pairs and that better likelihood estimates are obtained if there is no significant difference among ancestral population sizes. The model presented here indicates that the larger than expected variation found in multitaxa datasets can be explained by variation in the ancestral coalescence and the Poisson mutation process. In this context, observed variation can often be accounted for by variation in ancestral population sizes rather than invoking variation in other parameters, such as divergence time or mutation rate. The methods are applied to data from two groups of species pairs (sea urchins and Alpheus snapping shrimp) that are thought to have separated by the rise of Panama three million years ago.  相似文献   

6.
The coalescent with recombination describes the distribution of genealogical histories and resulting patterns of genetic variation in samples of DNA sequences from natural populations. However, using the model as the basis for inference is currently severely restricted by the computational challenge of estimating the likelihood. We discuss why the coalescent with recombination is so challenging to work with and explore whether simpler models, under which inference is more tractable, may prove useful for genealogy-based inference. We introduce a simplification of the coalescent process in which coalescence between lineages with no overlapping ancestral material is banned. The resulting process has a simple Markovian structure when generating genealogies sequentially along a sequence, yet has very similar properties to the full model, both in terms of describing patterns of genetic variation and as the basis for statistical inference.  相似文献   

7.
The coalescent in a continuous,finite, linear population   总被引:1,自引:0,他引:1  
Wilkins JF  Wakeley J 《Genetics》2002,161(2):873-888
In this article we present a model for analyzing patterns of genetic diversity in a continuous, finite, linear habitat with restricted gene flow. The distribution of coalescent times and locations is derived for a pair of sequences sampled from arbitrary locations along the habitat. The results for mean time to coalescence are compared to simulated data. As expected, mean time to common ancestry increases with the distance separating the two sequences. Additionally, this mean time is greater near the center of the habitat than near the ends. In the distant past, lineages that have not undergone coalescence are more likely to have been at opposite ends of the population range, whereas coalescent events in the distant past are biased toward the center. All of these effects are more pronounced when gene flow is more limited. The pattern of pairwise nucleotide differences predicted by the model is compared to data collected from sardine populations. The sardine data are used to illustrate how demographic parameters can be estimated using the model.  相似文献   

8.
This work studies the coalescent (ancestral pedigree, genealogy) of the entire population. The coalescent structure (topology) is robust, but selection changes the rate of coalescence (the time between branching events). The change in the rate of coalescence is not uniform, rather the reduction in the time between branching events is greatest when the coalescent is small (immediately after the common ancestor is the only member of the coalescent) with little change when the coalescent is large (immediately preceding when that common ancestor becomes fixed and the size of the coalescent is N). This provides that the reduction in the coalescent time due to selection is much greater than the reduction in the cumulative size of the coalescent (total number of ancestors of the present population after and including the most recent common ancestor) due to selection. If Ns≫1, the coalescent and fixation times are approximately equal to , which is much less than the value N which would result from neutral drift (N rather than the canonical haploid neutral fixation time 2N is the appropriate comparison for the model considered here), in particular, it is 70% less for Ns=10 and 95% less for Ns=100. However, for those values of Ns, and N ranging between 103 and 106, the reduction in the cumulative size of the coalescent of the entire population compared to the neutral case ranges from 17% to 65% (depending on the values of N and s). The coalescent time for two individuals for Ns of 10 and 100 is reduced by approximately 70% and 94%, respectively, compared with the neutral case. Because heterozygosity is proportional to the coalescent time for two individuals and the number of segregating alleles is proportional to the cumulative size of the coalescent, selection reduces heterozygosity more than it reduces the number of segregating alleles.  相似文献   

9.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.  相似文献   

10.
We analyze patterns of genetic variability of populations in the presence of a large seedbank with the help of a new coalescent structure called the seedbank coalescent. This ancestral process appears naturally as a scaling limit of the genealogy of large populations that sustain seedbanks, if the seedbank size and individual dormancy times are of the same order as those of the active population. Mutations appear as Poisson processes on the active lineages and potentially at reduced rate also on the dormant lineages. The presence of “dormant” lineages leads to qualitatively altered times to the most recent common ancestor and nonclassical patterns of genetic diversity. To illustrate this we provide a Wright–Fisher model with a seedbank component and mutation, motivated from recent models of microbial dormancy, whose genealogy can be described by the seedbank coalescent. Based on our coalescent model, we derive recursions for the expectation and variance of the time to most recent common ancestor, number of segregating sites, pairwise differences, and singletons. Estimates (obtained by simulations) of the distributions of commonly employed distance statistics, in the presence and absence of a seedbank, are compared. The effect of a seedbank on the expected site-frequency spectrum is also investigated using simulations. Our results indicate that the presence of a large seedbank considerably alters the distribution of some distance statistics, as well as the site-frequency spectrum. Thus, one should be able to detect from genetic data the presence of a large seedbank in natural populations.  相似文献   

11.
Davies JL  Simancík F  Lyngsø R  Mailund T  Hein J 《Genetics》2007,177(4):2151-2160
Coalescent theory deals with the dynamics of how sampled genetic material has spread through a population from a single ancestor over many generations and is ubiquitous in contemporary molecular population genetics. Inherent in most applications is a continuous-time approximation that is derived under the assumption that sample size is small relative to the actual population size. In effect, this precludes multiple and simultaneous coalescent events that take place in the history of large samples. If sequences do not recombine, the number of sequences ancestral to a large sample is reduced sufficiently after relatively few generations such that use of the continuous-time approximation is justified. However, in tracing the history of large chromosomal segments, a large recombination rate per generation will consistently maintain a large number of ancestors. This can create a major disparity between discrete-time and continuous-time models and we analyze its importance, illustrated with model parameters typical of the human genome. The presence of gene conversion exacerbates the disparity and could seriously undermine applications of coalescent theory to complete genomes. However, we show that multiple and simultaneous coalescent events influence global quantities, such as total number of ancestors, but have negligible effect on local quantities, such as linkage disequilibrium. Reassuringly, most applications of the coalescent model with recombination (including association mapping) focus on local quantities.  相似文献   

12.
Blum MG  Rosenberg NA 《Genetics》2007,176(3):1741-1757
Estimating the number of ancestral lineages of a sample of DNA sequences at time t in the past can be viewed as a variation on the problem of estimating the time to the most recent common ancestor. To estimate the number of ancestral lineages, we develop a maximum-likelihood approach that takes advantage of a prior model of population demography, in addition to the molecular data summarized by the pattern of polymorphic sites. The method relies on a rejection sampling algorithm that is introduced for simulating conditional coalescent trees given a fixed number of ancestral lineages at time t. Computer simulations show that the number of ancestral lineages can be estimated accurately, provided that the number of mutations that occurred since time t is sufficiently large. The method is applied to 986 present-day human sequences located in hypervariable region 1 of the mitochondrion to estimate the number of ancestral lineages of modern humans at the time of potential admixture with the Neanderthal population. Our estimates support a view that the proportion of the modern population consisting of Neanderthal contributions must be relatively small, less than approximately 5%, if the admixture happened as recently as 30,000 years ago.  相似文献   

13.
Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from two populations is variable along the genome. Within genomic segments all bases will share the same divergence-because they share a most recent common ancestor-when no recombination event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we interpret as a signature of recombination increasing the efficacy of selection.  相似文献   

14.
The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders).Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.  相似文献   

15.
Estimates of speciation times are subject to a number of potential errors. One source of bias is that effective population size (Ne) has been shown to influence substitution rates. This issue is of particular interest for phylogeographic studies because population sizes can vary dramatically among genetically structured populations across species’ ranges. In this study, we used multilocus data to examine temporal phylogeographic patterns in a widespread North American songbird, the Northern Cardinal (Cardinalis cardinalis). Species tree estimation indicated that the phylogeographic structure of C. cardinalis was comprised of four well-supported mainland lineages with large population sizes (large Ne) and two island lineages comprised of much smaller populations (small Ne). We inferred speciation times from mtDNA and multilocus data and found there was discordance between events that represented island-mainland divergences, whereas both estimates were similar for divergences among mainland lineages. We performed coalescent simulations and found that the difference in speciation times could be attributed to stochasticity for a recently diverged island lineage. However, the magnitude of the change between speciation times estimated from mtDNA and multilocus data of an older island lineage was substantially greater than predicted by coalescent simulations. For this divergence, we found the discordance in time estimates was due to a substantial increase in the mtDNA substitution rate in the small island population. These findings indicate that in phylogeographic studies the relative tempo of evolution between mtDNA and nuclear DNA can become highly discordant in small populations.  相似文献   

16.
A population’s neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re‐introduction histories. We detected a strong footprint of re‐introduction events on contemporary genetic structure, with re‐introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re‐introduced Swiss populations. However, re‐introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re‐introduction programme, re‐introduction history was the main determinant of today’s genetic structure.  相似文献   

17.
Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (theta) to T and the effect of uncertainty in theta on estimates of population divergence (tau) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on tau decrease when the range over which ancestral population size theta is assumed to be distributed decreases and when tau increases; they generally exclude zero when tau/(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding tau = 0 is roughly that l tau/(4Ne) > 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time.  相似文献   

18.
The relationship between speciation times and the corresponding times of gene divergence is of interest in phylogenetic inference as a means of understanding the past evolutionary dynamics of populations and of estimating the timing of speciation events. It has long been recognized that gene divergence times might substantially pre-date speciation events. Although the distribution of the difference between these has previously been studied for the case of two populations, this distribution has not been explicitly computed for larger species phylogenies. Here we derive a simple method for computing this distribution for trees of arbitrary size. A two-stage procedure is proposed which (i) considers the probability distribution of the time from the speciation event at the root of the species tree to the gene coalescent time conditionally on the number of gene lineages available at the root; and (ii) calculates the probability mass function for the number of gene lineages at the root. This two-stage approach dramatically simplifies numerical analysis, because in the first step the conditional distribution does not depend on an underlying species tree, while in the second step the pattern of gene coalescence prior to the species tree root is irrelevant. In addition, the algorithm provides intuition concerning the properties of the distribution with respect to the various features of the underlying species tree. The methodology is complemented by developing probabilistic formulae and software, written in R. The method and software are tested on five-taxon species trees with varying levels of symmetry. The examples demonstrate that more symmetric species trees tend to have larger mean coalescent times and are more likely to have a unimodal gamma-like distribution with a long right tail, while asymmetric trees tend to have smaller mean coalescent times with an exponential-like distribution. In addition, species trees with longer branches generally have shorter mean coalescent times, with branches closest to the root of the tree being most influential.  相似文献   

19.
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population.  相似文献   

20.
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号