首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-type ATPasesrequire both - and -subunits for functionalactivity. Although an -subunit for colonic apical membraneH-K-ATPase (HKc) has been identified and studied, its -subunithas not been identified. We cloned putative -subunit rat colonicH-K-ATPase (HKc) cDNA that encodes a 279-amino-acid protein with asingle transmembrane domain and sequence homology to other rat-subunits. Northern blot analysis demonstrates that this HKc isexpressed in several rat tissues, including distal and proximal colon,and is highly expressed in testis and lung. HKc mRNA abundance is upregulated threefold compared with normal in distal colon but notproximal colon, testis, or lung of K-depleted rats. In contrast, Na-K-ATPase 1 mRNA abundance isunaltered in distal colon of K-depleted rats. Na depletion, which alsostimulates active K absorption in distal colon, does not increaseHKc mRNA abundance. Western blot analyses using a polyclonalantibody raised to a glutathioneS-transferase-HKc fusion proteinestablished expression of a 45-kDa HKc protein in both apical andbasolateral membranes of rat distal colon, but K depletion increasedHKc protein expression only in apical membranes. Physicalassociation between HKc and HKc proteins was demonstrated byWestern blot analysis performed with HKc antibody onimmunoprecipitate of apical membranes of rat distal colon and HKcantibody. Tissue-specific upregulation of this -subunit mRNA inresponse to K depletion, localization of its protein, its upregulationby K depletion in apical membranes of distal colon, and its physicalassociation with HKc protein provide compelling evidence that HKcis the putative -subunit of colonic H-K-ATPase.  相似文献   

2.
The assembly of the -subunit of thegastric H-K-ATPase (HK) with the -subunit of the H-K-ATPase orthe Na-K-ATPase (NaK) was characterized with two anti-HKmonoclonal antibodies (MAbs). In fixed gastric oxyntic cells, inH-K-ATPase in vitro, and in Madin-Darby canine kidney (MDCK) cellstransfected with HK, MAb 2/2E6 was observed to bind to HK onlywhen interactions between - and -subunits were disrupted byvarious denaturants. The epitope for MAb 2/2E6 was mapped to thetetrapeptide S226LHY229 of the extracellulardomain of HK. The epitope for MAb 2G11 was mapped to the eightNH2-terminal amino acids of the cytoplasmic domain ofHK. In transfected MDCK cells, MAb 2G11 could immunoprecipitate HK with -subunits of the endogenous cell surface NaK, as well as that from early in the biosynthetic pathway, whereas MAb 2/2E6 immunoprecipitated only a cohort of unassembled endoglycosidase H-sensitive HK. In HK-transfected LLC-PK1 cells,significant immunofluorescent labeling of HK at the cell surfacecould be detected without postfixation denaturation or in live cells,although a fraction of transfected HK could also becoimmunoprecipitated with NaK. Thus assembly of HK with NaKdoes not appear to be a stringent requirement for cell surface deliveryof HK in LLC-PK1 cells but may be required in MDCKcells. In addition, endogenous posttranslational regulatory mechanismsto prevent hybrid - heterodimer assembly appear to be compromisedin transfected cultured renal epithelial cells. Finally, theextracellular epitope for assembly-sensitive MAb 2/2E6 may represent aregion of HK that is associated with - interaction.

  相似文献   

3.
The hypothesisthat amiloride-sensitive Na+channels (ENaC) are involved in cell volume regulation was tested.Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used tosuperfuse Xenopus oocytes expressing-rat ENaC (-rENaC). Whole cell currents werereversibly dependent on external osmolarity. Under conditions ofswelling (70 mosM) or shrinkage (450 mosM), current amplitude decreasedand increased, respectively. In contrast, there was no change incurrent amplitude of H2O-injectedoocytes to the above osmotic insults. Currents recorded from-rENaC-injected oocytes were not sensitive to externalCl concentration or to theK+ channel inhibitorBaCl2. They were sensitive toamiloride. The concentration of amiloride necessary to inhibit one-halfof the maximal rENaC current expressed in oocytes(Ki; apparentdissociation constant) decreased in swollen cells and increased inshrunken oocytes. The osmotic pressure-inducedNa+ currents showed propertiessimilar to those of stretch-activated channels, including inhibition byGd3+ andLa3+, and decreased selectivityfor Na+.-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the firstdemonstration that -rENaC heterologously expressed inXenopus oocytes may contribute tooocyte volume regulation following shrinkage.

  相似文献   

4.
Tumor necrosis factor- (TNF-), oneof the major inflammatory cytokines, is known to influence endothelialcell migration. In this study, we demonstrate that exposure of calfpulmonary artery endothelial cells to TNF- caused an increase in theformation of membrane protrusions and cell migration. Fluorescencemicroscopy revealed an increase in v3focal contacts but a decrease in 51 focalcontacts in TNF--treated cells. In addition, both cell-surface andtotal cellular expression of v3-integrinsincreased significantly, whereas the expression of51-integrins was unaltered. Only focalcontacts containing v3- but not51-integrins were present in membraneprotrusions of cells at the migration front. In contrast, robust focalcontacts containing 51-integrins were present in cells behind the migration front. A blocking antibody tov3, but not a blocking antibody to5-integrins, significantly inhibited TNF--inducedcell migration. These results indicate that in response to TNF-,endothelial cells may increase the activation and ligation ofv3 while decreasing the activation andligation of 51-integrins to facilitatecell migration, a process essential for vascular wound healing and angiogenesis.

  相似文献   

5.
Current evidence points to the existence of multiple processesfor bitter taste transduction. Previous work demonstrated involvement of the polyphosphoinositide system and an -gustducin(Ggust)-mediated stimulation of phosphodiesterase inbitter taste transduction. Additionally, a taste-enriched G protein-subunit, G13, colocalizes with Ggustand mediates the denatonium-stimulated production of inositol1,4,5-trisphosphate (IP3). Using quench-flow techniques, weshow here that the bitter stimuli, denatonium and strychnine, inducerapid (50-100 ms) and transient reductions in cAMP and cGMP andincreases in IP3 in murine taste tissue. This decrease ofcyclic nucleotides is inhibited by Ggust antibodies,whereas the increase in IP3 is not affected by antibodiesto Ggust. IP3 production is inhibited byantibodies specific to phospholipase C-2(PLC-2), a PLC isoform known to be activated byG-subunits. Antibodies to PLC-3 or toPLC-4 were without effect. These data suggest atransduction mechanism for bitter taste involving the rapid andtransient metabolism of dual second messenger systems, both mediatedthrough a taste cell G protein, likely composed ofGgust//13, with both systems beingsimultaneously activated in the same bitter-sensitive taste receptor cell.

  相似文献   

6.
Calcium channels are composed of a pore-forming subunit,1, and at least two auxiliarysubunits, - and2-subunits. It is well knownthat -subunits regulate most of the properties of the channel. Thefunction of 2-subunit isless understood. In this study, the effects of the calcium channel2-subunit on the neuronal1E voltage-gated calciumchannel expressed in Xenopus oocyteswas investigated without and with simultaneous coexpression of eitherthe 1b- or the2a-subunit. Most aspects of1E function were affected by2. Thus2 caused a shift in thecurrent-voltage and conductance-voltage curves toward more positivepotentials and accelerated activation, deactivation, and theinstallation of the inactivation process. In addition, the efficiencywith which charge movement is coupled to pore opening assessed bydetermining ratios of limiting conductance to limiting charge movementwas decreased by 2 byfactors that ranged from 1.6 (P < 0.01) for 1E-channels to 3.0 (P < 0.005) for1E1b-channels. These results indicate that2 facilitates the expressionand the maturation of1E-channels and converts thesechannels into molecules responding more rapidly to voltage.

  相似文献   

7.
This study examined the ability of protein kinase C (PKC) toinduce heterologous desensitization by targeting specific G proteinsand limiting their ability to transduce signals in smooth muscle.Activation of PKC by pretreatment of intestinal smooth muscle cellswith phorbol 12-myristate 13-acetate, cholecystokinin octapeptide, orthe phosphatase 1 and phosphatase 2A inhibitor, calyculin A,selectively phosphorylated Gi-1 and Gi-2,but not Gi-3 or Go, and blockedinhibition of adenylyl cyclase mediated by somatostatin receptorscoupled to Gi-1 and opioid receptors coupled toGi-2, but not by muscarinic M2 and adenosineA1 receptors coupled to Gi-3. Phosphorylationof Gi-1 and Gi-2 and blockade of cyclaseinhibition were reversed by calphostin C and bisindolylmaleimide, andadditively by selective inhibitors of PKC and PKC. Blockade ofinhibition was prevented by downregulation of PKC. Phosphorylation ofG-subunits by PKC also affected responses mediated by-subunits. Pretreatment of muscle cells withcANP-(4-23), a selective agonist of the natriureticpeptide clearance receptor, NPR-C, which activates phospholipase C(PLC)-3 via the -subunits of Gi-1 andGi-2, inhibited the PLC- response to somatostatin and[D-Pen2,5]enkephalin. The inhibition waspartly reversed by calphostin C. Short-term activation of PKC had noeffect on receptor binding or effector enzyme (adenylyl cyclase orPLC-) activity. We conclude that selective phosphorylation ofGi-1 and Gi-2 by PKC partly accounts forheterologous desensitization of responses mediated by the - and-subunits of both G proteins. The desensitization reflects adecrease in reassociation and thus availability of heterotrimeric G proteins.

  相似文献   

8.
Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we haveobserved that cardiac fibroblasts harbor five different RGD-bindingintegrins: 81,31, 51, v1, and v3.Stimulation of cardiac fibroblasts by angiotensin II (ANG II) ortransforming growth factor-1 (TGF-1) resulted in an increase ofprotein and heightening by 50% of the receptor density of81-integrin. The effect of ANG II wasblocked by an AT1, but not an AT2, receptorantagonist, or by an anti-TGF-1 antibody. ANG II and TGF-1increased fibronectin secretion, smooth muscle -actin synthesis, andformation of actin stress fibers and enhanced attachment of fibroblaststo a fibronectin matrix. The 8- and1-subunits were colocalized by immunocytochemistry with vinculin or 3-integrin at focal adhesion sites.These results indicate that 81-integrinis an abundant integrin on rat cardiac fibroblasts. Its positivemodulation by ANG II and TGF-1 in a myofibroblast-likephenotype suggests the involvement of81-integrin in extracellularmatrix protein deposition and cardiac fibroblast adhesion.

  相似文献   

9.
Using the Xenopus oocyteexpression system, we examined the mechanisms by which the - and-subunits of an epithelial Na+channel (ENaC) regulate -subunit channel activity and the mechanisms by which -subunit truncations cause ENaC activation. Expression of-ENaC alone produced small amiloride-sensitive currents (43 ± 10 nA, n = 7). These currentsincreased >30-fold with the coexpression of - and -ENaC to1,476 ± 254 nA (n = 20).This increase was accompanied by a 3.1- and 2.7-fold increase ofmembrane fluorescence intensity in the animal and vegetal poles of theoocyte, respectively, with use of an antibody directed against the-subunit of ENaC. Truncation of the last 75 amino acids of the-subunit COOH terminus, as found in the original pedigree ofindividuals with Liddle's syndrome, caused a 4.4-fold(n = 17) increase of theamiloride-sensitive currents compared with wild-type -ENaC.This was accompanied by a 35% increase of animal pole membranefluorescence intensity. Injection of a 30-amino acid peptide withsequence identity to the COOH terminus of the human -ENaCsignificantly reduced the amiloride-sensitive currents by 40-50%.These observations suggest a tonic inhibitory role on the channel'sopen probability (Po) by the COOH terminus of -ENaC. We conclude that the changes of current observed with coexpression of the - and -subunits or those observed with -subunit truncation are likely the result ofchanges of channel density in combination with large changes ofPo.

  相似文献   

10.
In the estrogen-treated rat myometrium, carbachol increased thegeneration of inositol phosphates by stimulating the muscarinic receptor-Gq/G11-phospholipaseC-3 (PLC-3) cascade. Exposure to carbachol resulted in a rapidand specific (homologous) attenuation of the subsequent muscarinicresponses in terms of inositol phosphate production, PLC-3translocation to membrane, and contraction. Refractoriness wasaccompanied by a reduction of membrane muscarinic binding sites and anuncoupled state of residual receptors. Protein kinase C (PKC) alteredthe functionality of muscarinic receptors and contributed to theinitial period of desensitization. A delayed phase of the muscarinicrefractoriness was PKC independent and was associated with adownregulation ofGq/G11.Atropine failed to induce desensitization as well asGq/G11downregulation, indicating that both events involve active occupancy ofthe receptor. Prolonged exposure toAlF4 reduced subsequent AlF4 as well as carbachol-mediatedinositol phosphate responses and similarly induced downregulation ofGq/G11. Data suggest that a decrease in the level ofGq/G11is subsequent to its activation and may account forheterologous desensitization.

  相似文献   

11.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

12.
Clathrin and the -adaptin subunit of the AP-1 clathrinadaptor have been previously identified on H-K-ATPase-richtubulovesicles from gastric acid secretory (oxyntic) cells [C. T. Okamoto, S. M. Karam, Y. Y. Jeng, J. G. Forte, and J. Goldenring.Am. J. Physiol. 274 (Cell Physiol. 43):C1017-C1029]. We further characterized this AP-1 adaptorfrom rabbit and hog tubulovesicles biochemically and immunologically.Clathrin coat proteins were stripped from purified tubulovesicularmembranes and fractionated by hydroxyapatite chromatography. The AP-1adaptor appears to elute at 200 mM sodium phosphate, based on thepresence of proteins in this fraction that are immunoreactive withantibodies against three of the four subunits of this heterotetramericcomplex: the -, µ1-, and1-adaptin subunits. Althoughthe putative -adaptin subunit in this fraction is not immunoreactivewith the anti--adaptin monoclonal antibody (MAb), this -adaptinis immunoreactive with polyclonal antibodies (PAbs) directed againstthe peptide sequenceGly625-Asp-Leu-Leu-Gly-Asp-Leu-Leu-Asn-Leu-Asp-Leu-Gly-Pro-Pro-Val640,a region conserved between 1-and 2-adaptins that is thought to be involved in the binding of clathrin heavy chain.Immunoprecipitation of the AP-1 adaptor complex from this fraction withanti--adaptin MAb 100/3 resulted in the coimmunoprecipitation of the-adaptin that did not react with the anti--adaptin MAb but didreact with the anti--adaptin PAbs. In contrast, immunoprecipitationof the AP-1 adaptor complex from crude clathrin-coated vesicles from brain resulted in the coimmunoprecipitation of a -adaptin that wasrecognized by both the anti--adaptin MAb and PAbs. These resultssuggest that the tubulovesicular AP-1 adaptor complex may be distinctfrom that found in the trans-Golgi network and may contain animmunologically distinct -adaptin. This immunologically distinct-adaptin may be diagnostic of apical tubulovesicular endosomes ofepithelial cells.

  相似文献   

13.
Protons regulateelectrogenic sodium absorption in a variety of epithelia, including thecortical collecting duct, frog skin, and urinary bladder. Recently,three subunits (, , ) coding for the epithelial sodium channel(ENaC) were cloned. However, it is not known whether pH regulatesNa+ channels directly byinteracting with one of the three ENaC subunits or indirectly byinteracting with a regulatory protein. As a first step to identifyingthe molecular mechanisms of proton-mediated regulation of apicalmembrane Na+ permeability inepithelia, we examined the effect of pH on the biophysical propertiesof ENaC. To this end, we expressed various combinations of -, -,and -subunits of ENaC in Xenopusoocytes and studied ENaC currents by the two-electrode voltage-clampand patch-clamp techniques. In addition, the effect of pH on the-ENaC subunit was examined in planar lipid bilayers. We report that ,,-ENaC currents were regulated by changes in intracellular pH(pHi) but not by changes inextracellular pH (pHo).Acidification reduced and alkalization increased channel activity by avoltage-independent mechanism. Moreover, a reduction ofpHi reduced single-channel openprobability, reduced single-channel open time, and increased single-channel closed time without altering single-channel conductance. Acidification of the cytoplasmic solution also inhibited ,-ENaC, ,-ENaC, and -ENaC currents. We conclude thatpHi but notpHo regulates ENaC and that the-ENaC subunit is regulated directly bypHi.  相似文献   

14.
The catalytic -subunit of oligomeric P-type ATPases such asNa-K-ATPase and H-K-ATPase requires association with a -subunit after synthesis in the endoplasmic reticulum (ER) to become stably expressed and functionally active. In this study, we have expressed the-subunit of Xenopus gastricH-K-ATPase (HK) in Xenopus oocytes together with -subunits of H-K-ATPase (HK) or Na-K-ATPase (NK) and have followed the biosynthesis, assembly, and cell surface expression of functional pumps. Immunoprecipitations ofXenopus HK from metabolicallylabeled oocytes show that it is well expressed and, when synthesizedwithout -subunits, can leave the ER and become fully glycosylated.Xenopus HK can associate with both coexpressed HK and NK, but the - complexes formed aredegraded rapidly in or close to the ER and do not produce functionalpumps at the cell surface as assessed by86Rb uptake. A possibleexplanation of these results is thatXenopus HK may contain atissue-specific signal that is important in the formation or correcttargeting of functional - complexes in the stomach but thatcannot be recognized in Xenopusoocytes and in consequence leads to cellular degradation of the -complexes in this experimental system.

  相似文献   

15.
-Adrenergic receptor (AR) activationand/or increases in cAMP regulate growth and proliferation of a varietyof cells and, in some cells, promote cell death. In the current studieswe addressed the mechanism of this growth reduction by examiningAR-mediated effects in the murine T-lymphoma cell line S49.Wild-type S49 cells, derived from immature thymocytes(CD4+/CD8+) undergo growth arrest andsubsequent death when treated with agents that increase cAMP levels(e.g., AR agonists, 8-bromo-cAMP, cholera toxin, forskolin).Morphological and biochemical criteria indicate that this cell death isa result of apoptosis. In cyc and kin S49cells, which lack Gs and functional protein kinase A(PKA), respectively, AR activation of Gs and cAMPaction via PKA are critical steps in this apoptotic pathway. S49 cellsthat overexpress Bcl-2 are resistant to cAMP-induced apoptosis. Weconclude that AR activation induces apoptosis in immature Tlymphocytes via Gs and PKA, while overexpression ofBcl-2 prevents cell death. AR/cAMP/PKA-mediated apoptosis mayprovide a means to control proliferation of immature T cells in vivo.

  相似文献   

16.
We have confirmed that A6 cells (derived fromkidney of Xenopus laevis), whichcontain both mineralocorticoid and glucocorticoid receptors, do notnormally possess 11-hydroxysteroid dehydroxgenase (11-HSD1 or11-HSD2) enzymatic activity and so are without apparent "protective" enzymes. A6 cells do not convert the glucocorticoid corticosterone to 11-dehydrocorticosterone but do, however, possess steroid 6-hydroxylase that transforms corticosterone to6-hydroxycorticosterone. This hydroxylase is cytochromeP-450 3A (CYP3A). We have nowdetermined the effects of 3,5-tetrahydroprogesterone andchenodeoxycholic acid (both inhibitors of 11-HSD1) and11-dehydrocorticosterone and11-hydroxy-3,5-tetrahydroprogesterone (inhibitors of11-HSD2) and carbenoxalone, which inhibits both 11-HSD1 and11-HSD2, on the actions and metabolism of corticosterone and activeNa+ transport [short-circuitcurrent(Isc)] inA6 cells. All of these 11-HSD inhibitory substances induced asignificant increment in corticosterone-inducedIsc, which wasdetectable within 2 h. However, none of these agents caused an increasein Isc whenincubated by themselves with A6 cells. In all cases, the additionalIsc was inhibitedby the mineralocorticoid receptor (MR) antagonist, RU-28318, whereasthe original Iscelicited by corticosterone alone was inhibited by the glucocorticoidreceptor antagonist, RU-38486. In separate experiments, each agent wasshown to significantly inhibit metabolism of corticosterone to6-hydroxycorticosterone in A6 cells, and a linear relationshipexisted between 6-hydroxylase inhibition and the MR-mediatedincrease in Iscin the one inhibitor tested. Troleandomycin, a selective inhibitor ofCYP3A, inhibited 6-hydroxylase and also significantly enhancedcorticosterone-induced Isc at 2 h. Theseexperiments indicate that the enhanced MR-mediated Isc in A6 cellsmay be related to inhibition of 6-hydroxylase activity in thesecells and that this 6-hydroxylase (CYP3A) may be protecting theexpression of corticosterone-induced active Na+ transport in A6 cells byMR-mediated mechanism(s).

  相似文献   

17.
Active K absorption in the rat distal colon is energizedby an apical H-K-ATPase, a member of the gene family of P-type ATPases. The H-K-ATPase -subunit (HKc) has been cloned and characterized (together with the -subunit of either Na-K-ATPase or gastric H-K-ATPase) in Xenopus oocytes as ouabain-sensitive86Rb uptake. In contrast, HKc, when expressed in Sf9cells without a -subunit, yielded evidence of ouabain-insensitiveH-K-ATPase. Because a -subunit (HKc) has recently been clonedfrom rat colon, this present study was initiated to determine whetherH-K-ATPase and its sensitivity to ouabain are expressed when these twosubunits (HKc and HKc) are transfected into a mammalian cellexpression system. Transfection of HEK-293 cells with HKc and HKccDNAs resulted in the expression of HKc and HKc proteins andtheir delivery to plasma membranes. H-K-ATPase activity was identified in crude plasma membranes prepared from transfected cells and was1) saturable as a function of increasing K concentration with aKm for K of 0.63 mM; 2) inhibited byorthovanadate; and 3) insensitive to both ouabain andSch-28080. In parallel transfection studies with HKc and Na-K-ATPase1 cDNAs and with HKc cDNA alone, there was expression ofouabain-insensitive H-K-ATPase activity that was 60% and 21% of thatin HKc/HKc cDNA transfected cells, respectively. Ouabain-insensitive 86Rb uptake was also identified incells transfected with HKc and HKc cDNAs. These studies establishthat HKc cDNA with HKc cDNA express ouabain-insensitiveH-K-ATPase similar to that identified in rat distal colon.

  相似文献   

18.
In patients withamyloid -related cerebrovascular disorders, e.g., Alzheimer'sdisease, one finds increased deposition of amyloid peptide (A) andincreased presence of monocyte/microglia cells in the brain. However,relatively little is known of the role of A in the trafficking ofmonocytes across the blood-brain barrier (BBB). Our studies show thatinteraction of A1-40 with monolayer of human brainendothelial cells results in augmented adhesion and transendothelialmigration of monocytic cells (THP-1 and HL-60) and peripheral bloodmonocytes. The A-mediated migration of monocytes was inhibited byantibody to A receptor (RAGE) and platelet endothelial cell adhesionmolecule (PECAM-1). Additionally, A-induced transendothelialmigration of monocytes were inhibited by protein kinase C inhibitor andaugmented by phosphatase inhibitor. We conclude that interaction ofA with RAGE expressed on brain endothelial cells initiates cellularsignaling leading to the transendothelial migration of monocytes. Wesuggest that increased diapedesis of monocytes across the BBB inresponse to A present either in the peripheral circulation or in thebrain parenchyma may play a role in the pathophysiology of A-relatedvascular disorder.

  相似文献   

19.
A role for protein kinase C (PKC)- and -isotypes in 1-adrenergicregulation of human tracheal epithelial Na-K-2Cl cotransport wasstudied with the use of isotype-specific PKC inhibitors and antisenseoligodeoxynucleotides to PKC- or - mRNA. Rottlerin, a PKC-inhibitor, blocked 72% of basolateral-to-apical, bumetanide-sensitive 36Cl flux innystatin-permeabilized cell monolayers stimulated with methoxamine, an1-adrenergic agonist, with a50% inhibitory concentration of 2.3 µM. Methoxamine increased PKCactivity in cytosol and a particulate fraction; the response wasinsensitive to PKC- and -IIisotype-specific inhibitors, but was blocked by general PKC inhibitorsand rottlerin. Rottlerin also inhibited methoxamine-induced PKCactivity in immune complexes of PKC-, but not PKC-. At the subcellular level, methoxamine selectively elevated cytosolic PKC-activity and particulate PKC- activity. Pretreatment of cellmonolayers with antisense oligodeoxynucleotide to PKC- for 48 hreduced the amount of whole cell and cytosolic PKC-, diminished whole cell and cytosolic PKC- activity, and blockedmethoxamine-stimulated Na-K-2Cl cotransport. Sense oligodeoxynucleotideto PKC- and antisense oligodeoxynucleotide to PKC- did not altermethoxamine-induced cotransport activity. These results demonstrate theselective activation of Na-K-2Cl cotransport by cytosolic PKC-.

  相似文献   

20.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号