首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats.  相似文献   

2.
3.
4.
Colony-stimulating factor-1 receptor (c-fms)   总被引:2,自引:0,他引:2  
The macrophage colony-stimulating factor, CSF-1 (M-CSF), is a homodimeric glycoprotein required for the lineage-specific growth of cells of the mononuclear phagocyte series. Apart from its role in stimulating the proliferation of bone marrow-derived precursors of monocytes and macrophages, CSF-1 acts as a survival factor and primes mature macrophages to carry out differentiated functions. Each of the actions of CSF-1 are mediated through its binding to a single class of high-affinity receptors expressed on monocytes, macrophages, and their committed progenitors. The CSF-1 receptor (CSF-1R) is encoded by the c-fms proto-oncogene, and is one of a family of growth factor receptors that exhibits an intrinsic tyrosine-specific protein kinase activity. Transduction of c-fms sequences as a viral oncogene (v-fms) in the McDonough (SM) and HZ-5 strains of feline sarcoma virus has resulted in alterations in receptor coding sequences that affect its activity as a tyrosine kinase and provide persistent signals for cell growth in the absence of its ligand. The genetic alterations in the c-fms gene that unmask its latent transforming potential abrogate its lineage-specific activity and enable v-fms to transform a variety of cells that do not normally express CSF-1 receptors.  相似文献   

5.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

6.
The normal cellular counterpart of the v-fms oncogene product is a receptor for the mononuclear phagocyte colony-stimulating factor, CSF-1. An interleukin-3 (IL-3)-dependent mouse myeloid cell line, FDC-P1, was infected with a murine retrovirus vector containing v-fms linked to a gene encoding resistance to neomycin (neo). Infected cells selected for resistance to the aminoglycoside G418 contained few proviral DNA copies per haploid genome, expressed low levels of the v-fms-coded glycoprotein, remained IL-3 dependent for growth, and were nontumorigenic in nude mice. In contrast, infected cells selected for their ability to grow in the absence of IL-3 contained an increased number of proviral insertions, expressed high levels of the v-fms-coded glycoprotein, and were tumorigenic in nude mice. The IL-3-independent cells expressed IL-3 receptors of comparable number and affinity to those detected in uninfected FDC-P1 cells and did not produce a growth factor able to support replication of the parental cells. Thus, the synthesis of high levels of the v-fms gene product in FDC-P1 cells abrogated their requirement for IL-3 and rendered the cells tumorigenic by a nonautocrine mechanism. The data suggest that v-fms encodes a promiscuous tyrosine kinase able to transform cells of the myeloid lineage that do not normally express CSF-1 receptors.  相似文献   

7.
IL-6 is a differentiation factor for M1 and WEHI-3B myeloid leukemic cells   总被引:3,自引:0,他引:3  
IL-6 has multiple biologic activities in different cell systems including both the ability to support cell proliferation and to induce differentiation. We reported previously the isolation and functional expression of a mouse IL-6 (mIL-6) cDNA clone derived from bone marrow stromal cells. In this paper, we show that mIL-6 is a potent inducer of terminal macrophage differentiation for a mouse myeloid leukemic cell line, M1. Addition of mIL-6 to cultures of M1 cells rapidly inhibits their proliferation and induces phagocytic activity and morphologic changes characteristic of mature macrophages. These phenotypic changes are accompanied at the molecular level by a decrease in proto-oncogene c-myc mRNA accumulation and increases in Fc gamma R, proto-oncogenes c-fos and c-fms (CSF-1R) mRNA expression. Furthermore, IL-6 enhances the expression of Fc gamma R and c-fms in differentiation-responsive D+, but not unresponsive D- sublines of mouse myelomonocytic leukemic WEHI-3B cells. Together with our previous observation that IL-6 stimulates colony formation by normal myeloid progenitors, these results strongly suggest an important regulatory role for IL-6 in myeloid cell growth and differentiation.  相似文献   

8.
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.  相似文献   

9.
The receptors for colony stimulating factor-1 (CSF-1), platelet derived growth factor and the c-kit protein tyrosine kinase (PTK) contain within their catalytic domains a stretch of 60-100 residues, largely unrelated in sequence, with no counterpart in other PTKs. Of the 64 amino acids within this kinase insert, 58 were deleted from the mouse CSF-1 receptor by oligonucleotide-directed mutagenesis. The mutant CSF-1 receptor was not markedly affected in its kinase activity, post-translational processing or its ability to induce autocrine transformation of NIH 3T3 mouse fibroblasts. Similarly, retention of kinase and transforming activities were observed following deletion of part or all of the kinase insert from the v-fms oncoprotein. The c- and v-fms kinase inserts were probed using monoclonal and polyclonal antibodies and were found to be highly antigenic. Two monoclonal antibodies raised to the v-fms cytoplasmic domain both recognized epitopes within the insert, and bound enzymatically active v-fms glycoproteins. These results indicate that the fms kinase insert is located on the surface of the protein and folds separately from the rest of the catalytic domain, but is not required for the biological activity of fms PTKs ectopically expressed in mouse fibroblasts. The insert may therefore play a specific function in cells such as monocytes and trophoblasts that normally express the CSF-1 receptor.  相似文献   

10.
IFN gamma/LPS treatment increases macrophage tumoricidal and microbicidal activity and inhibits CSF-1-induced macrophage proliferation. The mechanism underlying the latter effect was investigated in the CSF-1-dependent mouse macrophage cell line, BAC-1.2F5. IFN-gamma and LPS together dramatically reduced the total number of CSF-1 receptors (CSF-1R) via selective degradation of the cell surface form. Processing and transport of intracellular CSF-1R to the cell surface were unaffected. IFN-gamma alone had no effect but significantly enhanced LPS-induced CSF-1R down-regulation. The reduction in CSF-1R number was protein kinase C-dependent and involved changes in serine phosphorylation of the receptor at different sites. CSF-1R down-modulation by this mechanism may be important in switching off the energy-consuming processes of CSF-1R-mediated proliferation and chemotaxis in activated macrophages.  相似文献   

11.
A retroviral vector encoding the receptor for human colony-stimulating factor-1 (CSF-1) was introduced into murine myeloid FDC-P1 cells which require interleukin-3 (IL-3) for their proliferation and survival in culture. Cells expressing the CSF-1 receptor (CSF-1R), selected by fluorescence-activated cell sorting in the continued presence of murine IL-3, formed colonies in semisolid medium and were able to proliferate continuously in liquid cultures containing human recombinant CSF-1. Thus, although they do not synthesize endogenous murine CSF-1R, FDC-P1 cells express the downstream components of the CSF-1 mitogenic pathway necessary for its signal-response coupling. After receptor transduction, slowly proliferating factor-independent variants that produced neither CSF-1 nor growth factors able to support the proliferation of parental FDC-P1 cells also arose. When the human CSF-1R was expressed in FDC-P1 cells under the control of an inducible metallothionein promoter, the frequencies of both CSF-1-responsive and factor-independent variants increased after heavy-metal treatment. In addition, a monoclonal antibody to human CSF-1R arrested colony formation by both the CSF-1-dependent and factor-independent cells but did not affect their growth in response to IL-3. Therefore, the induction of both the CSF-1-dependent and factor-independent phenotypes depended on expression of the transduced human CSF-1R.  相似文献   

12.
The v-fms oncogene product of the McDonough strain of feline sarcoma virus is a member of the receptor tyrosine kinase family. Its cellular counterpart, the c-fms product, is the receptor for colony-stimulating factor 1 (CSF-1) of macrophages. We have reanalyzed the v-fms gene by direct sequencing of a biologically active clone. An additional A nucleotide was detected in position 2810 of the published v-fms sequence. The frameshift changed the COOH-terminal sequence of the v-fms protein from -R-937-G-P-P-L-COOH to -Q-937-R-T-P-P-V-A-R-COOH. Antibodies against a synthetic peptide representing this new sequence precipitated the v-fms proteins from transformed NRK cells as well as from feline sarcoma virus (McDonough)-infected feline fibroblasts. We show by tryptic peptide mapping that threonine 939 present in the new sequence is phosphorylated by a yet unknown serine/threonine kinase in vivo. In chicken fibroblasts expressing the v-fms gene, this phosphorylation clearly depended on the addition of exogenous CSF-1. Furthermore, addition of CSF-1 appeared to activate the serine/threonine kinase, as judged by phosphorylation of the synthetic peptide QRTPPVAR.  相似文献   

13.
The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.  相似文献   

14.
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.  相似文献   

15.
Tumor associated macrophages (TAM) can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF) is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R) have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.  相似文献   

16.
Interleukin-34 (IL-34) and colony stimulating factor-1 (CSF-1) both signal through the CSF-1R receptor tyrosine kinase, but they have no sequence homology, and their functions and signaling activities are not identical. We report the crystal structures of mouse IL-34 alone and in complex with the N-terminal three immunoglobulin-like domains (D1-D3) of mouse CSF-1R. IL-34 is structurally related to other helical hematopoietic cytokines, but contains two additional helices integrally associated with the four shared helices. The non-covalently linked IL-34 homodimer recruits two copies of CSF-1R on the sides of the helical bundles, with an overall shape similar to the CSF-1:CSF-1R complex, but the flexible linker between CSF-1R D2 and D3 allows these domains to clamp IL-34 and CSF-1 at different angles. Functional dissection of the IL-34:CSF-1R interface indicates that the hydrophobic interactions, rather than the salt bridge network, dominate the biological activity of IL-34. To degenerately recognize two ligands with completely different surfaces, CSF-1R apparently takes advantage of different subsets of a chemically inert surface that can be tuned to fit different ligand shapes. Differentiated signaling between IL-34 and CSF-1 is likely achieved by the relative thermodynamic independence of IL-34 vs. negative cooperativity of CSF-1 at the receptor-recognition sites, in combination with the difference in hydrophobicity which dictates a more stable IL-34:CSF-1R complex compared to the CSF-1:CSF-1R complex.  相似文献   

17.
18.
Metabolic labeling of simian virus 40-immortalized murine macrophages with 32Pi and immunoblotting with antibodies to phosphotyrosine demonstrated that the c-fms proto-oncogene product (colony-stimulating factor 1 [CSF-1] receptor) was phosphorylated on tyrosine in vivo and rapidly degraded in response to CSF-1. Stimulation of the CSF-1 receptor also induced immediate phosphorylation of several other cellular proteins on tyrosine. By contrast, the mature cell surface glycoprotein encoded by the v-fms oncogene was phosphorylated on tyrosine in the absence of CSF-1, suggesting that it functions as a ligand-independent kinase.  相似文献   

19.
Culture medium or medium supplement is one of the factors responsible for dendritic cell (DC) generation, but little is known about the influence of various media on DC culture. In our study we generated DC from adherent monocytes of human peripheral blood in the presence of GM-CSF, IL-4 and TNF-alpha. The following culture media were used: RPMI 1640 supplemented with 2% human serum albumin; RPMI 1640 supplemented with 2% TCH serum replacement; X-VIVO 15 and Panserin 501. Flow cytometry analysis revealed that in all media cells were CD83+ and lost CD14. Interestingly, the use of Panserin and RPMI with albumin preferentially gave rise to CD1a+ DC, whereas in X-VIVO and RPMI with TCH we observed both CD1a+ and CD1a-. Our results showed that RPMI with TCH yielded the highest percentage of cells expressing both CD80 and CD86 molecules and, in contrast to other media, the higher percentage of CD86+ cells in comparison to CD80+ cells.  相似文献   

20.
Altered cytokine production in mice lacking P2X(7) receptors   总被引:31,自引:0,他引:31  
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号