首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.  相似文献   

3.
Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts. Gastrointestinal (GI) tumors are frequent in the United States, and colorectal cancer (CRC) is the third most common cancer accounting for 10% of all cancer deaths. On the basis of the aforementioned epidemiological observations and the frequency of spontaneous precancerous GI lesions in the general population, even a modest increase in incidence by space radiation exposure could have a significant effect on health risk estimates for future manned space flights. Ground-based research is necessary to reduce the uncertainties associated with projected cancer risk estimates and to gain insights into molecular mechanisms involved in space-induced carcinogenesis. We investigated in vivo differential effects of γ-rays and HZE ions on intestinal tumorigenesis using two different murine models, ApcMin/+ and Apc1638N/+. We showed that γ- and/or HZE exposure significantly enhances development and progression of intestinal tumors in a mutant-line-specific manner, and identified suitable models for in vivo studies of space radiation–induced intestinal tumorigenesis.  相似文献   

4.
The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via α/β-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and α/β-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the α/β-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.  相似文献   

5.
Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth''s magnetosphere and solid body are lost. NASA''s radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA''s models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.  相似文献   

6.
Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE) particles poses a significant threat to future astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on the brain. In this study we examined the effects of 56Fe particle irradiation in an APP/PS1 mouse model of Alzheimer’s disease (AD). We demonstrated 6 months after exposure to 10 and 100 cGy 56Fe radiation at 1 GeV/µ, that APP/PS1 mice show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests. Furthermore, in male mice we saw acceleration of Aβ plaque pathology using Congo red and 6E10 staining, which was further confirmed by ELISA measures of Aβ isoforms. Increases were not due to higher levels of amyloid precursor protein (APP) or increased cleavage as measured by levels of the β C-terminal fragment of APP. Additionally, we saw no change in microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Aβ plaques or insulin degrading enzyme, which has been shown to degrade Aβ. However, immunohistochemical analysis of ICAM-1 showed evidence of endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Aβ trafficking through the blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle radiation can increase Aβ plaque pathology in an APP/PS1 mouse model of AD.  相似文献   

7.
When Nereis eggs are exposed to radiations from a tube of radium emanation, the walls of which absorb all the α-rays, the resulting physiological change is produced by rays having a coefficient of absorption of the order of 23.9 cm.–1 This fact indicates that the physiological effect is due almost exclusively to β-rays. The γ-rays alone can produce the reaction. To produce equivalent physiological effects exposure to γ-rays alone must be approximately 60 times as long as exposure to β- and γ-rays together.  相似文献   

8.
Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.  相似文献   

9.
The concept of the relative biological effectiveness (RBE) is essential for treatment planning in carbon ion therapy and for understanding the biological effects of high-LET radiation. As this quantity depends on many factors, both its experimental determination and the assessment of its uncertainty are not trivial. For the limiting case of zero dose, where the RBE takes its maximum value RBEα, we present in this article a simple empirical-based approach to estimate its uncertainty. A Gaussian error calculus is applied to equally take into account both uncertainties from experiments with high- and low-LET radiation. From a theoretical point of view, we then infer, using a simple Monte Carlo model, the distribution of RBEα values. This illustrates why the conventional error propagation approach is inappropriate in some cases. In these cases, likewise also the error estimates have to be obtained with a more sophisticated approach. Uncertainties of RBE, visualized by error bars, are of importance for treatment planning and also for setting up a precision goal for predicting biophysical models such as the local effect model.  相似文献   

10.
We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.  相似文献   

11.
Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APCMin/+ mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion 56Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy 56Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy 56Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after 56Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after 56Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in 56Fe than γ irradiated samples. Activation of β-catenin was more in 56Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to 56Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.  相似文献   

12.
Two novel human and mouse DNA polymerases of the polX family   总被引:17,自引:3,他引:14       下载免费PDF全文
We describe here two novel mouse and human DNA polymerases: one (pol λ) has homology with DNA polymerase β while the other one (pol µ) is closer to terminal deoxynucleotidyltransferase. However both have DNA polymerase activity in vitro and share similar structural organization, including a BRCT domain, helix–loop–helix DNA-binding motifs and polymerase X domain. mRNA expression of pol λ is highest in testis and fetal liver, while expression of pol µ is more lymphoid, with highest expression both in thymus and tonsillar B cells. An unusually large number of splice variants is observed for the pol µ gene, most of which affect the polymerase domain. Expression of mRNA of both polymerases is down-regulated upon treatment by DNA damaging agents (UV light, γ-rays or H2O2). This suggests that their biological function may differ from DNA translesion synthesis, for which several DNA polymerase activities have been recently described. Possible functions are discussed.  相似文献   

13.
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.  相似文献   

14.
We have studied the biological effects of the internal exposure to radioactive manganese-56 dioxide (56MnO2), the major radioisotope dust found in soil after atomic bomb explosions. Our previous study of blood chemistry indicated a possible adverse effect of 56MnO2 on the liver. In the present study, we further examined the effects on the liver by determining changes in hepatic gene expressions. Male Wistar rats were exposed to 56MnO2 particles (three groups with the whole-body doses of 41, 90, and 100 mGy), stable MnO2 particles, or external 60Co γ-rays (2 Gy), and were examined together with the non-treated control group on postexposure day 3 and day 61. No histopathological changes were observed in the liver. The mRNA expression of a p53-related gene, the cyclin-dependent kinase inhibitor 1A, increased in 56MnO2 as well as in γ-ray irradiated groups on postexposure day 3 and day 61. The expression of a stress-responsive gene, nuclear factor κB, was also increased by 56MnO2 and γ-rays on postexposure day 3. However, the expression of cytokine genes (interleukin-6 or chemokine ligand 2) or fibrosis-related TGF-β/Smad genes (Tgfb1, Smad3, or Smad4) was not altered by the exposure. Our data demonstrated that the internal exposure to 56MnO2 particles at less than 0.1 Gy significantly affected the short-term gene expressions in the liver in a similar manner with 2 Gy of external γ-irradiation. These changes may be adaptive responses because no changes occurred in cytokine or TGF-β/Smad gene expressions.  相似文献   

15.
Longitudinal sections of human cortical bone were submitted to thermal neutrons. γ-ray spectra were recorded repeatedly during 15 days following irradiation. They showed that Na24 is predominant as early as 3 hours after activation and that all the γ-emitters have decayed on the 15th day. When the γ-rays have disappeared, β-rays are still produced by the sections. It was proved by the absorption curve in aluminium that all these β-rays are issued from the P32 induced in the sections by activation of P31. Therefore autoradiograms registered 15 days after activation reveal the distribution of P32 in the sections. γ-ray spectra and β-ray absorption curves of neutron activated sections of ivory demonstrated a mineral composition similar to that of bone. Autoradiograms of ivory sections activated for various times were used to establish the relation between the optical density of the autoradiograms and the radioactivity in P32. When the bone autoradiograms are compared with the ivory standards of known radioactivity, the optical densities of single osteons (Haversian systems), can be related to their phosphorus contents. Autoradiograms and microradiograms of the same sections were examined side by side. The least calcified osteons, that contain 80 per cent of the calcium of the fully calcified osteons, also contain about 80 per cent of the phosphorus of the fully mineralized osteons. It is concluded that the Ca:P ratio remains constant while mineralization of bone tissue is being completed.  相似文献   

16.
M. Heude  F. Fabre 《Genetics》1993,133(3):489-498
It has long been known that diploid strains of yeast are more resistant to γ-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and α2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/α effects are of a very large amplitude, after both UV and γ-rays, and also depends on a1 and α2. The coexpression of a and α in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G(2) phase cells. Related to this, the coexpression of a and α in RAD(+) haploids depresses UV-induced mutagenesis in G(2) cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G(1) UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-α2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.  相似文献   

17.
Summary When an aqueous solution of plasmid DNA at a constant low concentration of 5 µg/cm3 was irradiated with60Co-rays, D37 dose of single-strand breaks was decreased from 18 Gy at a dose-rate of 6.77 Gy/h of acute irradiation to 2.3 Gy at a dose-rate of 0.00212 Gy/h. OrG value was increased from 0.0010 to 0.0081. Similar dose-rate dependency of D37 dose andG value were also found when the plasmid DNA solution was treated with various concentrations of tritiated water at various dose-rates, ranging from 5.13 Gy/h to 0.000118 Gy/h. RBE of tritiumß-rays for single-strand breaks was ranged from 0.3 to 0.5 in a wide range of dose-rates. When the DNA solution was saturated with argon to remove oxygen, the dose-rate dependency of-rays was abolished and that of tritiumß-rays was significantly supressed. When the DNA solution in air was kept at 4° C for 50 h or 25 days after acute irradiation, theG value of DNA breaks was the same as that kept at —20° C for the same period, but much lower than that of the solution irradiated for the same period at a lower dose-rate to give the same total doses. This shows that the inverse dose-rate effect could not be induced from the different exposure periods but from continuous irradiation of different dose-rates. The inverse dose-rate effect for inactivation of transforming activity of DNA irradiated with tritiated water was also observed in the range from 0.0588 Gy/h to 0.00118 Gy/h.  相似文献   

18.
We have further characterized at the single channel level the properties of epithelial sodium channels formed by coexpression of α with either wild-type β or γ subunits and α with carboxy-terminal truncated β (βT) or γ (γT) subunits in Xenopus laevis oocytes. αβ and αβT channels (9.6 and 8.7 pS, respectively, with 150 mM Li+) were found to be constitutively open. Only upon inclusion of 1 μM amiloride in the pipette solution could channel activity be resolved; both channel types had short open and closed times. Mean channel open probability (P o) for αβ was 0.54 and for αβT was 0.50. In comparison, αγ and αγT channels exhibited different kinetics: αγ channels (6.7 pS in Li+) had either long open times with short closings, resulting in a high P o (0.78), or short openings with long closed times, resulting in a low P o (0.16). The mean P o for all αγ channels was 0.48. αγT (6.6 pS in Li+) behaved as a single population of channels with distinct kinetics: mean open time of 1.2 s and closed time of 0.4 s, with a mean P o of 0.6, similar to that of αγ. Inclusion of 0.1 μM amiloride in the pipette solution reduced the mean open time of αγT to 151 ms without significantly altering the closed time. We also examined the kinetics of amiloride block of αβ, αβT (1 μM amiloride), and αγT (0.1 μM amiloride) channels. αβ and αβT had similar blocking and unblocking rate constants, whereas the unblocking rate constant for αγT was 10-fold slower than αβT. Our results indicate that subunit composition of ENaC is a main determinant of P o. In addition, channel kinetics and P o are not altered by carboxy-terminal deletion in the β subunit, whereas a similar deletion in the γ subunit affects channel kinetics but not P o.  相似文献   

19.

Background

Pre-eclampsia is the leading cause of maternal and neonatal morbidity and mortality with incompletely understood etiopathogenesis. The purpose of the current study is to determine whether there is a relationship between the presence of autoantibodies against β1, β2 and α1 adrenoreceptors and severe pre-eclampsia.

Methodology/Principal Findings

Synthetic peptides corresponding to amino acid sequences of the second extracellular loops of β1, β2 and α1 adrenoreceptors were synthesized as antigens to test 34 patients with severe pre-eclampsia, 36 normal pregnancy women and 40 non-pregnant controls for the presence of autoantibodies using enzyme-linked immunosorbent assay. The respective frequencies of autoantibodies against β1, β2 and α1 adrenoreceptors were 50.0% (17/34), 52.9% (18/34) and 55.9% (19/34) in patients with severe pre-eclampsia, 19.4% (7/36) (p = 0.011), 19.4% (7/36) (p = 0.006) and 17.6% (6/36) (p = 0.001) in normal pregnancy women and 10% (4/40), 7.5% (3/40) and 10% (4/40) (p<0.001) in non-pregnant controls. Titers of these autoantibodies were also significantly increased in patients with severe pre-eclampsia. By logistic regression analysis, the presence of these three autoantibodies significantly increased the risk of neonatal death (odds ratio, 13.5; 95% confidence interval, 1.3–141.3; p = 0.030) and long-term neonatal hospitalization (odds ratio, 5.0; 95% confidence interval, 1.3–19.1; p = 0.018). The risk of hypertension and fetal distress were also associated with the presence of these three autoantibodies.

Conclusions/Significance

This novel pilot study demonstrated for the first time that the presence of autoantibodies against β1, β2 and α1 adrenoreceptors are increased in patients with severe pre-eclampsia. Pregnant women who are positive for the three autoantibodies are at increased risks of neonatal mortality and morbidity. We posit that these autoantibodies may be involved in the pathogenesis of severe pre-eclampsia.  相似文献   

20.
The dependence of the incidence of radiation-induced cancer on the dose rate of the radiation exposure is a question of considerable importance to the estimation of risk of cancer induction by low-dose-rate radiation. Currently a dose and dose-rate effectiveness factor (DDREF) is used to convert high-dose-rate risk estimates to low dose rates. In this study, the end point of neoplastic transformation in vitro has been used to explore this question. It has been shown previously that for low doses of low-LET radiation delivered at high dose rates, there is a suppression of neoplastic transformation frequency at doses less than around 100 mGy. In the present study, dose-response curves up to a total dose of 1000 mGy have been generated for photons from (125)I decay (approximately 30 keV) delivered at doses rates of 0.19, 0.47, 0.91 and 1.9 mGy/min. The results indicate that at dose rates of 1.9 and 0.91 mGy/min the slope of the induction curve is about 1.5 times less than that measured at high dose rate in previous studies with a similar quality of radiation (28 kVp mammographic energy X rays). In the dose region of 0 to 100 mGy, the data were equally well fitted by a threshold or linear no-threshold model. At dose rates of 0.19 and 0.47 mGy/min there was no induction of transformation even at doses up to 1000 mGy, and there was evidence for a possible suppressive effect. These results show that for this in vitro end point the DDREF is very dependent on dose rate and at very low doses and dose rates approaches infinity. The relative risks for the in vitro data compare well with those from epidemiological studies of breast cancer induction by low- and high-dose-rate radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号