首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite being important conservation tools, tourism and research may cause transmission of pathogens to wild great apes. Investigating respiratory disease outbreaks in wild bonobos, we identified human respiratory syncytial virus and Streptococcus pneumoniae as causative agents. A One Health approach to disease control should become part of great ape programs.  相似文献   

2.
Worldwide, Norway rats (Rattus norvegicus) carry a number of zoonotic pathogens. Many studies have identified rat-level risk factors for pathogen carriage. The objective of this study was to examine associations between abundance, microenvironmental and weather features and Clostridium difficile, antimicrobial-resistant (AMR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) carriage in urban rats. We assessed city blocks for rat abundance and 48 microenvironmental variables during a trap-removal study, then constructed 32 time-lagged temperature and precipitation variables and fitted multivariable logistic regression models. The odds of C. difficile positivity were significantly lower when mean maximum temperatures were high (≥ 12.89°C) approximately 3 months before rat capture. Alley pavement condition was significantly associated with AMR E. coli. Rats captured when precipitation was low (< 49.40 mm) in the 15 days before capture and those from blocks that contained food gardens and institutions had increased odds of testing positive for MRSA. Different factors were associated with each pathogen, which may reflect varying pathogen ecology including exposure and environmental survival. This study adds to the understanding of how the microenvironment and weather impacts the epidemiology and ecology of zoonotic pathogens in urban ecosystems, which may be useful for surveillance and control activities.  相似文献   

3.
Infectious diseases including those acquired through direct or indirect contact with people and livestock threaten the survival of wild great apes. Few studies have reported enterobacterial pathogens in chimpanzees. We used multiplex PCR to screen faeces of chimpanzees sharing a landscape with villagers and livestock in Bulindi, Uganda for Salmonella spp., enterohemorrhagic Escherichia coli (E. coli) and Shigella spp./enteroinvasive E. coli. All three potentially zoonotic pathogens were detected. Individual prevalence ranged between 7 and 20%, with most infections observed in mature male chimpanzees. These preliminary findings suggest detailed investigation of enterobacterial infections in people, primates and livestock in this ecosystem is warranted.  相似文献   

4.

Background

The swine-adapted serovar Choleraesuis of Salmonella enterica subspecies enterica is found rarely in domestic pigs in Germany. However, a considerable and increasing number of S. Choleraesuis organisms have been isolated from wild boars in Germany in recent years. To investigate a possible epidemiological context, S. Choleraesuis strains from a regional German wild boar population and other hosts were characterised by genotyping methods.

Results

Macrorestriction analysis, biochemical differentiation and antimicrobial susceptibility typing enabled the identification of several clusters of S. Choleraesuis. Some clusters occurred almost permanently in a certain district, whereas other groups circulated among different wild boar herds in larger regions. Non-porcine hosts were infected with the same cluster as the wild boars.

Conclusions

The emergence of S. Choleraesuis in wild boars might be caused by a higher prevalence in the wild boar population, but also the higher awareness to infections with African swine fever may have resulted in a higher number of examined animals. Separation of wild boar populations and, as a result, also the diverse S. Choleraesuis organisms might be due to natural barriers and artificial barriers like arterial roads. The findings of S. Choleraesuis in domestic pigs emphasize the importance of strict biosecurity measures to prevent transmission from wild boars of this but also other pathogens. To avoid risks for humans by zoonotic pathogens regular inspections of meat from wildlife need to be conducted.
  相似文献   

5.
Introduced carnivores exert considerable pressure on native predators through predation, competition and disease transmission. Recent research shows that exotic carnivores negatively affect the distribution and abundance of the native and endangered carnivores of Madagascar. In this study, we provide information about the frequency and distribution of interactions between exotic (dogs and cats) and native carnivores (Eupleridae) in the Betampona Natural Reserve (BNR), Madagascar, using noninvasive camera trap surveys. Domestic dogs (Canis familiaris) were the most frequently detected carnivore species within the BNR, and we found that indirect interactions between exotic and native carnivores were frequent (n = 236). Indirect interactions were more likely to occur near the research station (incidence rate ratio = 0.91), which may constitute a disease transmission hot spot for carnivores at BNR. The intervals between capture of native and exotic carnivores suggest that there is potential for pathogen transmission between species in BNR. These capture intervals were significantly shorter near the edge of the reserve (P = 0.04). These data could be used to implement biosecurity measures to monitor interactions and prevent disease transmission between species at the domestic animal and wildlife interface.  相似文献   

6.
Global reports of emergent pathogens in humans have intensified efforts to identify wildlife reservoirs. Subterranean mammals, such as bathyergid mole rats, are largely overlooked, despite their high-level exposure to soil-dwelling microbes. Initial assessment of bathyergid reservoir potential was determined using a broad-range 16S rRNA PCR approach, which revealed an 83% PCR-positivity for the 234 bathyergid lung samples evaluated. The presence of the Bacillus cereus complex, a ubiquitous bacterial assemblage, containing pathogenic and zoonotic species, was confirmed through nucleotide sequencing, prior to group- and species-specific PCR sequencing. The latter allowed for enhanced placement and prevalence estimations of Bacillus in four bathyergid species sampled across a range of transformed landscapes in the Western Cape Province, South Africa. Two novel Bacillus strains (1 and 2) identified on the basis of the concatenated 16S rRNA-groEL-yeaC data set (2066 nucleotides in length), clustered with B. mycoides (ATCC 6462) and B. weihenstephanensis (WSBC 10204), within a well-supported monophyletic lineage. The levels of co-infection, evaluated with a groEL strain-specific assay, developed specifically for this purpose, were high (71%). The overall Bacillus presence of 17.95% (ranging from 0% for Georychus capensis to 45.35% for Bathyergus suillus) differed significantly between host species (χ2 = 69.643; df = 3; P < 0.05), being significantly higher in bathyergids sampled near an urban informal settlement (χ2 = 70.245; df = 3; P < 0.05). The results highlight the sentinel potential of soil-dwelling mammals for monitoring anthropogenically introduced, opportunistic pathogens and the threats they pose to vulnerable communities, particularly in the developing world.  相似文献   

7.
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.  相似文献   

8.
Elevated levels of animal waste-borne pathogen in ambient water is a serious human health issue. Mitigating influx of pathogens from animal waste such as dairy manure to soil and water requires improving our existing knowledge of pathogen reductions in dairy manure treatment methods. This study was conducted to enhance the  understanding of human pathogen decay in liquid dairy manure in anaerobic (AN) and limited aerobic (LA) storage conditions. The decay of three pathogens (Escherichia coli, Salmonella spp., and Listeria monocytogenes) was assessed in bench-scale batch reactors fed with liquid slurry. A series of temperatures (30, 35, 42, and 50 °C) conditions were tested to determine the impacts of temperature on Escherichia coli, Salmonella, and L. monocytogenes decay in AN and LA conditions. Results showed prolonged survival of E. coli compared to Salmonella and L. monocytogenes in both LA and AN environments. Variations in survival among pathogens with temperature and environmental conditions (i.e., LA and AN) indicated the necessity of developing improved dairy manure waste treatment methods for controlling animal waste-borne pathogens. The results of this study will help in improving the current understanding of human pathogen decay in dairy manure for making informed decisions of animal manure treatment by stakeholders.  相似文献   

9.
With a view to identify the pathogens and to establish the role of these pathogens in regulation of the density of honey bee population occurring in the apiaries of the area concerned samples of honeybee were collected from the beekeepers in some parts of central Algeria It is revealed that Nosema sp., Varroa destrutor, Peanibacillus larvae are associated with the disease manifestation in honey bees. The presence of Nosema sp., Varroa destrutor, Peanibacillus larvae was analyzed using standard OIE methods. Spores of Paenibacillus larvae were detected in 56.6 % in winter 52.32 % in spring. 29.33 % in autumn and 11.25 % in summer. Nosema infestation was recorded in 47.91 % bee individuals during spring. Varroa infestation rate was maximum 12.57 % in summer and lowest 3.44 % in spring. Analysis of data indicates that Boumerdes and Tipaza, diseases induced mortality exceeds 10 % in honeybee. There exists a significant correlation between Nosema disease and mortalities in honeybees. Seasons play significant role, irrespective of pathogens, in disease manifestation.  相似文献   

10.
11.
Arcobacter is an emerging foodborne pathogen having zoonotic significance. Enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive sequence-based PCR (rep-PCR) analysis of a total of 41 Arcobacter isolates revealed a greater degree of genetic diversity. ERIC-PCR genotyping distinguished 14, 13 and 12 genotypes among 16, 13 and 12 isolates of A. butzleri, A. cryaerophilus and A. skirrowii, respectively. Rep-PCR genotyping distinguished 15, 12 and 11 genotypes among 16, 13 and 12 isolates of A. butzleri, A. cryaerophilus and A. skirrowii, respectively. The discriminatory power for ERIC and rep-PCR was found to be 0.997 and 0.996, respectively. Close clustering between isolates of animal and human origin are indicative of probable zoonotic significance.  相似文献   

12.
An impedimetric mga gene specific DNA sensor was developed by immobilization of single stranded DNA probe onto the screen printed modified gold-dendrimer nanohybrid composite electrode for early and rapid detection of S. pyogenes in human throat swab samples causing rheumatic heart disease. Electrochemical impedance response was measured after hybridization with bacterial single stranded genomic DNA (ssG-DNA) with probe. The sensor was found highly specific to S. pyogenes and can detect as low as 0.01 ng ssDNA in 6 µL sample only in 30 min. The nanohybrid sensor was also tested with non-specific pathogens and characterized by FTIR. An early detection of the pathogen S. pyogenes in human can save damage of mitral and aortic heart valves (rheumatic heart disease) by proper medical care.  相似文献   

13.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that causes food-borne disease in humans ranging from watery diarrhea to bloody diarrhea and severe hemorrhagic colitis, renal failure and hemolytic uremic syndrome. Cattle, the most important source of E. coli O157:H7 transmission to humans, harbor the bacteria in their gastrointestinal tract without showing clinical symptoms. Prevention of E. coli O157:H7 infections in ruminants could diminish the public health risk. However, there is no specific treatment available nor a vaccine or a therapeutic agent which completely prevents E. coli O157:H7 infections in cattle. This paper provides an overview of latest research data on eradicating enterohemorrhagic E. coli O157:H7 in ruminants by use of bovine lactoferrin administration. The article provides insights into the anti-microbial and immunomodulatory activities of bovine lactoferrin against E. coli O157:H7 infections in cattle.  相似文献   

14.
Accurate and precise surveys of primate abundance provide the basis for understanding species ecology and essential information for conservation assessments. Owing to the elusive nature of wild apes and the vast region of dense forest they inhabit, population estimates of central chimpanzees (Pan troglodytes troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) have largely relied on surveys of their nests. Specific information about the nesting behavior of apes permits the estimation of the number of nests built (nest creation rate). Similarly, information on nest characteristics and environmental factors can be used to estimate the time it takes nests to decay (nest decay rate). Nest creation and decay rates are then used to convert nest density estimates to absolute ape densities. Population estimates that use site-specific estimates of nest creation and decay rates are more accurate and precise. However, it is common practice to generalize these conversion factors across sites because of the additional cost of studies required to gather the information to estimate them. Over a 9-mo study period, we detected and monitored the time to decay of gorilla nests (N = 514) and chimpanzee nests (N = 521) in northern Republic of Congo. We investigated the influence of nest characteristics and environmental factors on nest survivorship and estimated the mean time to nest decay (or equivalently survival) using MARK. Key factors influencing nest decay rate included ape species, forest type, nest height, mean rainfall, nest structure, nest type, and primary aspects of nest construction. Our findings highlight the synergistic effect of behavior and environment on great ape nest degradation, as well as providing practical insights for improving measures to monitor remaining populations of these endangered species.  相似文献   

15.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

16.
African pythons (Pythonidae) and large vipers (Bitis spp.) act as definitive hosts for Armillifer armillatus and Armillifer grandis parasites (Crustacea: Pentastomida) in the Congo Basin. Since the proportion of snakes in bushmeat gradually increases, human pentastomiasis is an emerging zoonotic disease. To substantiate the significance of this threat, we surveyed snakes offered for human consumption at bushmeat markets in the Kole district, Democratic Republic of the Congo, for the presence of adult pentastomids. In Bitis vipers (n = 40), Armillifer spp. infestations exhibited an 87.5% prevalence and 6.0 median intensity. Parasite abundance covaried positively with viper length, but not with body mass. In pythons (n = 13), Armillifer spp. exhibited a 92.3% prevalence and 3.5 median intensity. The positive correlations between parasite abundance and python length or mass were statistically nonsignificant. Ninety-one percent of A. grandis were discovered in vipers and 97% of infected vipers hosted A. grandis, whereas 81% of A. armillatus specimens were found in pythons and 63% of infected pythons hosted A. armillatus. Thus, challenging the widespread notion of strict host specificity, we found ‘reversed’ infections and even a case of coinfection. In this study, we also gathered information about the snake consumption habits of different tribal cultures in the area. Infective parasite ova likely transmit to humans directly by consumption of uncooked meat, or indirectly through contaminated hands, kitchen tools or washing water.  相似文献   

17.
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.  相似文献   

18.
V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0–1.2 × 104 MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 105 MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 103 MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 105 MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.  相似文献   

19.
Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS–Polyacrylamide gel electrophoresis coupled with nano LC–MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.  相似文献   

20.
Exotic pathogen invasions can change host eco-evolutionary interactions and possibly create an evolutionary trap when the pathogen generates mismatches between developmental phenology and reproductive cues. Taylor’s checkerspot butterfly (Euphydryas editha taylori), is an endangered species of western North America with 80 % of the extant populations dependent on an exotic host, Plantago lanceolata. Survey of occupied, recently extinct, and unsuccessful butterfly reintroduction sites spanning 4° of latitude revealed widespread disease on P. lanceolata caused by Pyrenopeziza plantaginis. This fungal pathogen, new to North America, reduces the standing crop of P. lanceolata foliage throughout the winter post-diapause larval feeding period. However, disease is absent when adult butterflies and pre-diapause larvae are active. Diseased plants were frequent in Taylor’s checkerspot populations with a history of persistence, but >90 % of the host plants in these populations had initiated new leaves within the first few weeks of post-diapause larval feeding. Conversely, host plants in recently extinct and unsuccessfully reintroduced populations were severely diseased, >66 % mean foliage necrosis/plant, and <23 % had initiated new leaves. Feeding choice trials with 25 larvae indicated that new leaves were strongly and consistently preferred by post-diapause larvae over all other available leaf types, both diseased and non-diseased. Because the influence of disease on post-diapause larval food resources is developmentally disassociated from oviposition, P. plantaginis invasion appears to have triggered an evolutionary trap for Plantago-dependent populations of Taylor’s checkerspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号