首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetolactate synthase from spontaneous mutants of tobacco (Nicotiana tabacum; KS-43 and SK-53) and cotton (Gossypium hirsutum; PS-3, PSH-91, and DO-2) selected in tissue culture for resistance to a triazolopyrimidine sulfonanilide showed varying degrees of insensitivity to feedback inhibitor(s) valine and/or leucine. A similar feature was evident in the enzyme isolated from chlorsulfuron-resistant weed biotypes, Kochia scoparia and Stellaria media. Dual inhibition analyses of triazolopyrimidine sulfonanilide, thifensulfuron, and imazethapyr versus feedback inhibitor leucine revealed that the three herbicides were competitive with the amino acid for binding to acetolactate synthase from wild-type cotton cultures. Acetolactate synthase inhibiting herbicides may bind to the regulatory site on the enzyme.  相似文献   

2.
Regulation of the Pool Size of Valine in Escherichia coli K-12   总被引:9,自引:6,他引:3       下载免费PDF全文
Three mutations (ilvH611, ilvH612, and ilvH613) are described which make Escherichia coli K-12 resistant to valine inhibition and are located near leu. The expression of the ilv genes appears to be normal in these mutants since the isoleucine-valine biosynthetic enzymes are not derepressed relative to the wild type. The intracellular concentration of valine is, however, higher in the mutants than in the isogenic ilvH(+) strain. These mutants also excrete valine, probably because of the high intracellular concentration of this amino acid. The pool size of valine is regulated independently from that of isoleucine and leucine. The increased intracellular concentration of valine is due to a decreased feedback inhibition that valine exerts on its own biosynthetic pathway. In fact, acetolactate synthase activity assayed in extracts of ilvH612 and ilvH613 mutants is more resistant to valine inhibition than the activity assayed in the ilvH(+) isogenic strain. Two forms of acetolactate synthase activity can be separated from these extracts by adsorption and elution on hydroxylapatite. One of them is as sensitive to valine inhibition as that of the wild type, the other is more resistant to valine inhibition.  相似文献   

3.
The properties of acetohydroxy acid synthase (AHAS, EC 4.1.3.18) from wild-type Chlorella emersonii (var. Emersonii, CCAP-211/11n) and two spontaneous sulfometuron methyl (SMM)-resistant mutants were examined. The AHAS from both mutants was resistant to SMM and cross-resistant to imazapyr (IM) and the triazolopyrimidine sulfonanilide herbicide XRD-498 (TP). The more-SMM-resistant mutant had AHAS with altered catalytic parameters (K m, specificity), but unchanged sensitivity to the feedback inhibitors valine and leucine. The second mutant enzyme was less sensitive to the feedback inhibitors, but had otherwise unchanged kinetic parameters. Inhibition-competition experiments indicated that the three herbicides (SMM, IM, TP) bind in a mutually exclusive manner, but that valine can bind simultaneously with SMM or TP. The three herbicide classes apparently bind to closely overlapping sites. We suggest that the results with C. emersonii and other organisms can all be explained if there are separate binding sites for herbicides, feedback inhibitors and substrates.Abbreviations AHAS acetohydroxy acid synthase - AL acetolactate - AHB acetohydroxybutyrate - IM imazapyr - TP triazolopyrimidine sulfonanilide herbicide XRD-498 - R enzyme specificity - SMM sulfometuron methyl This research was supported in part by the United States — Israel Binational Science Foundation (BSF), Jerusalem, Israel (Grant 86-00205) and the Fund for Basic Research, Israel Academy of Sciences.  相似文献   

4.
Acetolactate synthase (EC 4.1.3.18) activity was examined in maize (Zea mays L.) endosperm and embryos as a function of kernel development. When assayed using unpurified homogenates, embryo acetolactate synthase activity appeared less sensitive to inhibition by leucine + valine and by the imidazolinone herbicide imazapyr than endosperm acetolactate synthase activity. Evidence is presented to show that pyruvate decarboxylase contributes to apparent acetolactate synthase activity in crude embryo extracts and a modification of the acetolactate synthase assay is proposed to correct for the presence of pyruvate decarboxylase in unpurified plant homogenates. Endosperm acetolactate synthase activity increased rapidly during early kernel development, reaching a maximum of 3 micromoles acetoin per hour per endosperm at 25 days after pollination. In contrast, embryo activity was low in young kernels and steadily increased throughout development to a maximum activity of 0.24 micromole per hour per embryo by 45 days after pollination. The sensitivity of both endosperm and embryo acetolactate synthase activities to feedback inhibition by leucine + valine did not change during kernel development. The results are compared to those found for other enzymes of nitrogen metabolism and discussed with respect to the potential roles of the embryo and endosperm in providing amino acids for storage protein synthesis.  相似文献   

5.
The synthesis of the three types of acetolactate synthase (EC 4.1.3.18) which are responsible for the biosynthesis os isoleucine and valine, was observed in Aerobacter aerogenes I-12, an isoleucine-requiring mutant, when grown on the four kinds of media. When the cells were grown on isoleucine-rich medium, acetolactate synthase sensitive to feedback inhibition and having an optimum pH at 8.0 was formed. By increasing the amount of potassium phosphate in the medium, the catabolite repression of the enzyme having an optimum pH at 6.0 and which is insensitive to feedback inhibition, was released. In contrast, acetolactate synthase having an optimum pH at 8.0 and insensitive to feedback inhibition was formd when isoleucine was limited, irrespective of phosphate concentrations. Two insensitive enzymes were not regulated by isoleucine, leucine and valine, although sensitive pH 8.0 enzyme was repressed by them. Thus, it may be assumed that the synthesis of insensitive pH 8.0 enzyme were repressed by limiting the amount of isoleucine is still open.  相似文献   

6.
K. Wu  G. Mourad  J. King 《Planta》1994,192(2):249-255
A valine-resistant mutant line, VAL-2, ofArabidopsis thaliana (L.) Heynh. was identified by screening M 2 populations of ethylmethane-sulfonate-mutagenized seeds. The resistance was found to be due to a single, dominant, nuclear gene mutation. Assay of acetolactate synthase (ALS) indicated that the valine resistance in this mutant is caused by decreased sensitivity of ALS to the branched-chain amino acids, valine, leucine andisoleucine. A two fold decrease in apparentK m value for pyruvate of the mutant ALS enzyme was detected compared with that of the wild type. The sensitivity of the ALS enzyme to sulfonylurea, imidazolinone and triazolopyrimidine herbicides was not altered in the mutant. At the plant growth level the mutant was also resistant to valine plus leucine, but was sensitive to leucine orisoleucine alone. The mutant gene,var1, maps, or is very closely linked, toCSR1, the gene encoding acetolactate synthase inArabidopsis.Abbreviations ALS acetolactate synthase - BCAA branched-chain amino acid - CS chlorsulfuron - IM imidazolinone - SU sulfonylurea - TP triazolopyrimidine We thank Dr. George W. Haughn for providing Arabidopsis lines MSU12, MSU15, MSU21, MSU22 and MSU23. This work was supported by a Research Grant from the Natural Sciences and Engineering Research Council of Canada to J.K., K.W. is grateful for a University of Saskatchewan Graduate Scholarship.  相似文献   

7.
The herbicide sulfometuron methyl (SM) inhibited the growth of the cyanobacterium Synechococcus sp. PCC7942, but not of Synechocystis sp. PCC6714. The inhibitory effect was alleviated by the simultaneous addition of valine, leucine and isoleucine. SM resistant mutants were isolated from Synechococcus 7942, two types of which were further analysed. In these mutants, SM3/20 and SM2/32, the activity of acetolactate synthase (ALS) — a key enzyme in the biosynthesis of branched-chain amino acids —appeared 2600- and 300-fold, respectively, more resistant to SM than that of their wild type. Strain SM2/32 also exhibited a low level of ALS activity. Although the growth of the latter mutant was extremely inhibited by valine, the sensitivity of its ALS activity to feed-back inhibition by the amino acid was unaltered. At high concentrations valine inhibited growth of the wild type strains and of the mutant SM3/20. Isoleucine alleviated the valine-induced growth inhibition. Unlike that of Synechococcus 7942, the ALS activity of Synechocystis was found to tolerate high concentrations (100-fold) of the herbicide. The study confirms that the SM mutations are correlated with a cyanobacterial ilv gene.Abbreviations ALS acetolactate synthase; ile, isoleucine - leu leucine - NTG N-methyl-N-nitro-N-nitrosoguanidine - SM sulfometuron methyl - SMr sulfometuron methyl resistant - val valine  相似文献   

8.
Saxena PK  King J 《Plant physiology》1990,94(3):1111-1115
Two cell lines of Datura innoxia resistant to two imidazolinone herbicides, imazapyr and imazaquin, were isolated from mutagenized, predominantly haploid cell suspension cultures. Both of the resistant variants were >1000-fold more resistant than the wild-type to the two imidazolinones. The variant resistant to imazapyr showed cross-resistance to imazaquin and vice versa, but no cross-resistance to a structurally different inhibitor, chlorsulfuron, a sulfonylurea herbicide, was observed. The target enzyme, acetolactate synthase, extracted from imidazolinone-resistant cell lines was not inhibited by imazapyr or imazaquin but was sensitive to chlorsulfuron indicating separable sites of action for these inhibitors. The variation in resistance and cross-resistance of chlorsulfuron-resistant (PK Saxena, J King [1988] Plant Physiol 86: 863-867) and imidazolinone-resistant cell lines of Datura innoxia demonstrates the possibility of separate mutations of acetolactate synthase gene resulting in specific phenotypes.  相似文献   

9.
Evidence is reported that shows the presence in Escherichia coli K-12 of a newly found acetolactate synthase. This enzyme is the product of two genes, ilvH and ilvI, both located very close to leu. Amber mutations have been found in both genes and therefore their products are polypeptides. Mutations in the ilvH gene cause the appearance of an acetolactate synthase activity which is relatively resistant to valine inhibition and can be separated by adsorption on hydroxylapatite from another activity present in the extract and more sensitive to valine inhibition than the former. A mutant altered in the ilvI gene was isolated among the revertants sensitive to valine inhibition of an ilvH mutant. Such a mutant lacks the resistant acetolactate synthase. A temperature-sensitive revertant of the ilvI mutant contained a temperature-sensitive acetolactate synthase. Thus ilvI is the structural gene for a specific acetolactate synthase. The activity of the ilvH gene product has been measured by adding an extract containing it to a purified ilvI acetolactate synthase, which, upon incubation, became more sensitive to valine inhibition. Conversely, a valine-sensitive acetolactate synthase (the product of the ilvH and the ilvI genes) became more resistant to valine inhibition upon incubation with an extract of a strain containing a missense ilvH gene product.  相似文献   

10.
Acetohydroxyacid synthase (EC 4.1.3.18) has been extracted from leaves of three valine-resistant (Valr) tobacco (Nicotiana tabacum) mutants, and compared with the enzyme from the wild-type. The enzyme from all three mutants is appreciably less sensitive to inhibition by leucine and valine than the wild-type. Two of the mutants, Valr-1 and Valr-6, have very similar enzymes, which under all conditions are inhibited by less than half that found for the wild-type. The other mutant, Valr-7, has an enzyme that only displays appreciably different characteristics from the wild-type at high pyruvate or inhibitor concentrations. Enzyme from Valr-7 also has a higher apparent Km for pyruvate, threefold greater than the value determined for the wild-type and the other mutants. The sulphonylurea herbicides strongly inhibit the enzyme from all the lines, though the concentrations required for half-maximal inhibition of enzyme from Valr-1 and Valr-6 are higher than for Valr-7 or the wildtype. No evidence has been found for multiple isoforms of acetohydroxyacid synthase, and it is suggested that the valine-resistance of these mutant lines is the result of two different mutations affecting a single enzyme, possibly involving different subunits.  相似文献   

11.
Acetolactate synthase small subunit encoding ilvN genes from the parental Streptomyces cinnamonensis strain and mutants resistant either to valine analogues or to 2-ketobutyrate were cloned and sequenced. The wild-type IlvN from S. cinnamonensis is composed of 175 amino acid residues and shows a high degree of similarity with the small subunits of other valine-sensitive bacterial acetolactate synthases. Changes in the sequence of ilvN conferring the insensitivity to valine in mutant strains were found in two distinct regions. Certain point mutations were located in the conserved domain near the N terminus, while others resulting in the same phenotype shortened the protein at V(104) or V(107). To confirm whether the described mutations were responsible for the changed biochemical properties of the native enzyme, the wild-type large subunit and the wild-type and mutant forms of the small one were expressed separately in E. coli and combined in vitro to reconstitute the active enzyme.  相似文献   

12.
Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This enzyme is of substantial importance because it is the target of several herbicides, including all members of the popular sulfonylurea and imidazolinone families. However, the emergence of resistant weeds due to mutations that interfere with the inhibition of AHAS is now a worldwide problem. Here we summarize recent ideas on the way in which these herbicides inhibit the enzyme, based on the 3D structure of Arabidopsis thaliana AHAS. This structure also reveals important clues for understanding how various mutations can lead to herbicide resistance.  相似文献   

13.
Acetohydroxy acid synthase (AHAS, EC 2.2.1.6; also known as acetolactate synthase, ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. AHAS is the target of several classes of herbicides. In the present study, the role of three well-conserved arginine residues (R141, R372, and R376) in tobacco AHAS was determined by site-directed mutagenesis. The mutated enzymes, referred to as R141A, R141F, and R376F, were inactive and unable to bind to the cofactor, FAD. The inactive mutants had the same secondary structure as that of the wild type. The mutants R141K, R372F, and R376K exhibited much lower specific activities than the wild type, and moderate resistance to herbicides such as Londax, Cadre, and/or TP. The mutation R141K showed a strong reduction in activation efficiency by ThDP, while the mutations R372K and R376K showed a strong reductions in activation efficiency by FAD in comparison to the wild type enzyme. Taking into account the data presented here and the homology model constructed previously [Le et al. (2004) Biochem. Biophys. Res. Commun. 317, 930-938], it is suggested that the three amino acid residues studied (R141, R372, and R376) are located essentially at the enzyme active site, and, furthermore, that residues R372 and R376 are possibly responsible for the binding of the enzyme to FAD.  相似文献   

14.
Saxena PK  King J 《Plant physiology》1988,86(3):863-867
Cells resistant to the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl were isolated from a predominantly haploid cell suspension culture of Datura innoxia P. Mill. Exponentially growing cell colonies (aggregates of about 40 cells) were mutagenized with ethyl methane sulfonate, subcultured for 10 days to allow growth recovery and plated on a medium containing either chlorsulfuron or sulfometuron methyl at a concentration (10−8 molar) which killed wild type cells. Surviving clones were picked up after 3 to 4 weeks, further proliferated as callus or cell suspension cultures, and tested for their resistance to both the sulfonylureas and imidazolinones, a chemically different class of herbicides. The variants were stable and showed high (100- to 1000-fold) resistance to the sulfonylureas. While some also exhibited cross resistance to imidazolinones, others showed no cross-resistance at all or, as in one case, greater sensitivity than wild type cells to the imidazolinones. Both classes of herbicides tested inhibited acetolactate synthase activity isolated from wild type cells. The acetolactate synthase of the resistant variants, however, was found to be resistant to the sulfonylureas and also to the imidazolinone(s) in those cells showing cross-resistance to the latter. The lack of cross-resistance observed in some cases provides evidence that the two groups of herbicides have slightly different sites on the acetolactate synthase molecule.  相似文献   

15.
Ray TB 《Plant physiology》1984,75(3):827-831
The sulfonylurea herbicide chlorsulfuron blocks the biosynthesis of the amino acids valine and isoleucine in plants. Addition of these two amino acids to excised pea root (Pisum sativum L. var Alaska) cultures incubated in the presence of chlorsulfuron completely alleviates herbicide-induced growth inhibition. The site of action of chlorsulfuron is the enzyme acetolactate synthase which catalyzes the first step in the biosynthesis of valine and isoleucine. This enzyme is extremely sensitive to inhibition by chlorsulfuron having I50 values ranging from 18 to 36 nanomolar. In addition, acetolactate synthase from a wide variety of tolerant and sensitive plants species is highly sensitive to inhibition by chlorsulfuron.  相似文献   

16.
Acetohydroxyacid synthase (AHAS), the first enzyme unique to the biosynthesis of isoleucine, leucine, and valine, is the target enzyme for several classes of herbicides. The AHAS gene from Arabidopsis thaliana, including the chloroplast transit peptide, was cloned into the bacterial expression plasmid pKK233-2. The resulting plasmid was used to transform an AHAS-deficient Escherichia coli strain MF2000. The growth of the MF2000 strain of E. coli was complemented by the functional expression of the Arabidopsis AHAS. The AHAS protein was processed to a molecular mass of 65 kilodaltons that was similar to the mature protein isolated from Arabidopsis seedlings. The AHAS activity extracted from the transformed E. coli cells was inhibited by imidazolinone and sulfonylurea herbicides. AHAS activity extracted from Arabidopsis is inhibited by valine and leucine; however, this activity was insensitive to these feedback inhibitors when extracted from the transformed E. coli.  相似文献   

17.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of three classes of herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. Five mutants (W266F, W439F, W490F, W503F, and W573F) of the ALS gene from Nicotiana tabacum were constructed and expressed in Escherichia coli, and the enzymes were purified. The W490F mutation abolished the binding affinity for cofactor FAD and inactivated the enzyme. The replacement of Trp573 by Phe yielded a mutant ALS resistant to the three classes of herbicides. The other three mutations, W266F, W439F, and W503F, did not significantly affect the enzymatic properties and the sensitivity to the herbicides. These results indicate that the Trp490 residue is essential for the binding of FAD and that Trp573 is located at the herbicide binding site. The data also suggest that the three classes of herbicides bind ALS competitively.  相似文献   

18.
The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway.  相似文献   

19.
A spontaneous leu-linked mutation (ilvH2015) in Escherichia coli K-12 made the strain resistant to 1 mM valine and l mM glycylvaline (Val-r) and caused the isoleucine and valine biosynthetic enzyme, acetohydroxy acid synthase, to be less sensitive to feedback inhibition by valine than the wild-type enzyme. Transfer of the ilvDAC deletion into a strain carrying ilvH2015 abolished the effect of the marker on the acetohydroxy acid synthase and rendered it as sensitive to valine as the enzyme in the isogenic control strain without the Val-r marker under both repressing and limiting conditions. In contrast, auxotrophy caused by transfer of an ilvC lesion into the Val-r strain did not interfere with the effect of ilvH2015 on valine sensitivity of acetohydroxy acid synthase. In addition, the presence of the Val-r marker produced minor but significant pleiotropic effects on several other isoleucine and valine biosynthetic enzymes but did not cause derepression of the ilv gene cluster. These studies suggest some type of interaction between a product produced by a gene close to leu and the isoleucine and valine biosynthetic enzymes.  相似文献   

20.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号