首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compartmentation and metabolism of indole-3-acetic acid (IAA) was examined in protoplasts derived from needles ofPinus sylvestris L., leaves of normal plants ofNicotiana tabacum L., leaves ofN. tabacum plants carrying the T-DNA gene 1 (rG1 plants) and leaves ofN. tabacum plants carrying the T-DNA gene 2 (rG2 plants) by using a rapid cell-fractionation method. In all tissues, 30%–40% of the IAA pool was located in the chloroplast, while the remainder was found in the cytosol. Quantitative analysis of indole-3-ethanol (IEt) showed that in bothPinus andNicotiana the IEt pool was located exclusively in the cytosol. The only plant that contained endogenous indoleacetamide (IAAm) was therG1-mutant ofN. tabacum, expressing theAgrobacterium tumefaciens T-DNA gene 1. Cellular fractionation of protoplasts from this transgenic plant showed that the entire IAAm pool was located in the cytosol. Feeding experiments utilizing [5-3H]tryptophan, [5-3H]IEt, [1′-14C] and [2′-14C]IAA demonstrated that the biosynthesis and catabolism of IAA occurred in the cytosol in bothPinus and in the wild type and the different mutants ofNicotiana. Furthermore, the biosynthesis of IAAm in therG1 plants was also shown to be localized in the cytosol.  相似文献   

2.
Exogenously supplied indole-3-acetic acid (IAA) stimulated ethylene production in tobacco (Nicotiana glauca) leaf discs but not in those of sugar beet (Beta vulgaris L.). The stimulatory effect of IAA in tobacco was relatively small during the first 24 hours of incubation but became greater during the next 24 hours. It was found that leaf discs of these two species metabolized [1-14C]IAA quite differently. The rate of decarboxylation in sugar beet discs was much higher than in tobacco. The latter contained much less free IAA but a markedly higher level of IAA conjugates. The major conjugate in the sugar beet extracts was indole-3-acetylaspartic acid, whereas tobacco extracts contained mainly three polar IAA conjugates which were not found in the sugar beet extracts. The accumulation of the unidentified conjugates corresponded with the rise of ethylene production in the tobacco leaf discs. Reapplication of all the extracted IAA conjugates resulted in a great stimulation of ethylene production by tobacco leaf discs which was accompanied by decarboxylation of the IAA conjugates. The results suggest that in tobacco IAA-treated leaf discs the IAA conjugates could stimulate ethylene production by a slow release of free IAA. The inability of the exogenously supplied IAA to stimulate ethylene production in the sugar beet leaf discs was not due to a deficiency of free IAA within the tissue but rather to the lack of responsiveness of this tissue to IAA, probably because of an autoinhibitory mechanism existing in the sugar beet leaf discs.  相似文献   

3.
Transgenic plants overproducing indole-3-acetic acid (IAA) from expression of the Agrobacterium tumefaciens T-DNA IAA biosynthesis genes were used to study the conjugation of IAA. At the 11-node stage, free IAA, as well as ester- and amide-conjugated IAA, was analyzed in wild-type tobacco SR1 and in transgenic plants denoted 35S-iaaM/iaaH (line C) and 35S-iaaM x 35S-iaaH (line X). The transgenic plants contained increased levels of both free and conjugated IAA, and the main increase in IAA conjugates occurred in amide conjugates. Two amide conjugates were identified by fritfast atom bombardment liquid chromatography-mass spectrometry as indole-3-acetylaspartic acid (IAAsp) and indole-3-acetylglutamic acid (IAGlu), and one ester conjugate was identified as indole-3-acetylglucose. IAAsp and IAGlu were also identified as endogenous substances in wild-type plants. In wild-type plants, the percent of total IAA in the free form was significantly higher in young leaves (73 [plus or minus] 7%, SD) than in old leaves (36 [plus or minus] 8%), whereas there was no difference between young (73 [plus or minus] 8%) and old internodes (70 [plus or minus] 9%). In IAA-overproducing transformants, both free and conjugated IAA levels were increased, but the percent free IAA was maintained constant (57 [plus or minus] 10%) for both leaves and internodes, independent of the total IAA level or tissue age. These results suggest that synthesis or transport of IAA conjugates is regulated in the vegetative wild-type plant, and that different organs possess a unique balance between free and conjugated IAA. The IAA-overproducing plant, however, acquires a lower proportion of free IAA in the stem and younger leaves, presumably determined by a higher conjugation in those tissues compared with wild type.  相似文献   

4.
Protoplast preparations from barley (Hordeum vulgare L.) enzymatically converted [5-3H]tryptophan to [3H]indole-3-acetic acid (IAA). Both a chloroplast and a crude cytoplasmic fraction, isolated from protoplasts that had previously been fed [5-3H]tryptophan, contained [3H]IAA. Chloroplast and cytoplasmic preparations, isolated from protoplasts and thereafter incubated with [5-3H]tryptophan, also synthesized [3H]IAA, although, in both instances the pool size was less than 50% of that detected in the in-vivo feeds. There were no significant differences in the amounts of [3H]IAA that accumulated in protoplast and chloroplast preparations incubated in light and darkness.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - RC radiocounting  相似文献   

5.
The products of indole-3-acetic acid (IAA) metabolism by incubating hypocotyl sections and decapitated seedlings of Lupinus albus were investigated. Single treatments using [1-14C]-IAA, [2-14C]-IAA or [5-3H]-IAA and double treatments using [1-14C]-IAA+[5-3H]-IAA were carried out. Extracts from treated plant material were analyzed by paper chromatography (PC), Thin layer chromatography (TLC), and high performance liquid chromatography (HPLC). When hypocotyl sections were incubated in [2-14C]-IAA, several IAA decarboxylation products including indole-3-aldehyde (IA1), indole-3-methanol (IM), 3-hydroxymethyloxindole (HMOx), methyleneoxindole (MOx) and 3,3-bisindolylmethane (BIM) were detected in the 95% ethanol extract; a latter extraction with 1M NaOH rendered IAA, IM and BIM, suggesting that conjugated auxins were formed in addition to conjugated IM. In sections incubated with [1-14C]-IAA, the 1M NaOH extraction also produced IAA so confirming the formation of conjugated auxins. The same decarboxylation products and two conjugated auxins, indole-3-acetylaspartic acid (IAAsp) and 1-O-(indole-3-acetyl)--D-glucose (IAGlu), were detected in the acetonitrile extracts from decapitated seedlings treated with [5-3H]-IAA. After a double isotope treatment ([1-14C]-IAA+[5-3H]-IAA) of decapitated seedlings, the ratio 14C/3H measured in the HPLC fractions of the acetonitrile extracts confirmed the presence of decarboxylation products as well as conjugated auxins.  相似文献   

6.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

7.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

8.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

9.
The promoter of the nit1 gene, encoding the predominantly expressed isoform of the Arabidopsis thaliana (L.) Heynh. nitrilase isoenzyme family, fused to the β-glucuronidase gene (uidA) drives β-glucuronidase expression in the root system of transgenic A. thaliana and tobacco plants. This expression pattern was shown to be controlled developmentally, suggesting that the early differentiation zone of root tips and the tissue surrounding the zone of lateral root primordia formation may constitute sites of auxin biosynthesis in plants. The root system of A. thaliana was shown to express functional nitrilase enzyme. When sterile roots were fed [2H]5-L-tryptophan, they converted this precusor to [2H]5-indole-3-acetonitrile and [2H]5-indole-3-acetic acid. This latter metabolite was further metabolized into base-labile conjugates which were the predominant form of [2H]5-indole-3-acetic acid extracted from roots. When [1-13C]-indole-3-acetonitrile was fed to sterile roots, it was converted to [1-13C]-indole-3-acetic acid which was further converted to conjugates. The results prove that the A. thaliana root system is an autonomous site of indole-3-acetic acid biosynthesis from L-tryptophan. Received: 3 February 1998 / Accepted: 17 April 1998  相似文献   

10.
11.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

12.
Müller A  Weiler EW 《Planta》2000,211(6):855-863
 The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of l-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the mutant hyperaccumulates the precursor indole-3-glycerophosphate (up to 10 mg per g FW). Instability of indole-3-glycerophosphate leads to release of indole-3-acetic acid (IAA) from this metabolite during standard workup of samples for determination of conjugated IAA. The apparent increase in “conjugated IAA” in trp3-1 mutant plants can be traced back entirely to indole-3-glycerophosphate degradation. Thus, the levels of neither free IAA nor conjugated IAA increase detectably in the trp3-1 mutant compared to wild-type plants. Precursor-feeding experiments to shoots of sterile-grown wild-type plants using [2H]5-l-tryptophan have shown incorporation of label from this precursor into indole-3-acetonitrile and indole-3-acetic acid with very little isotope dilution. It is concluded that Arabidopsis thaliana shoots synthesize IAA from l-tryptophan and that the non-tryptophan pathway is probably an artifact. Received: 1 March 2000 / Accepted: 10 April 2000  相似文献   

13.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

14.
1-O-(indole-3-acetyl)-β-d-glucose: sugar indoleacetyl transferase (1-O-IAGlc-SugAc) is a novel enzyme catalyzing the transfer of the indoleacetyl (IA) moiety from 1-O-(indole-3-acetyl)-β-d-glucose to several saccharides to form ester-linked IAA conjugates. 1-O-IAGlc-SugAc was purified from liquid endosperm of Zea mays by fractionation with ammonium sulphate, anion-exchange, Blue Sepharose chromatography, affinity chromatography on Concanavalin A-Sepharose, adsorption on hydroxylapatite and preparative PAGE. The obtained enzyme preparation indicates only one band of R f 0.67 on 8% non-denaturing PAGE consisting of two polypeptides of 42 and 17 kDa in SDS/PAGE. Highly purified 1-O-IAGlc-SugAc shows maximum transferase activity with monosaccharides (mannose, glucose, and galactose), lower activity with disaccharides (melibiose, gentobiose) and trisaccharide (raffinose) and minimal enzymatic activity with oligosaccharides from the raffinose family as well. The novel acyltransferase exhibits, besides its primary indoleacetylation of sugar, minor hydrolytic and disproportionation activities producing free IAA and supposedly 1,2-di-O-(indole-3-acetyl)-β-glucose, respectively. Presumably, 1-O-IAGlc-SugAc, like 1-O-indole-3-acetyl-β-d-glucose-dependent myo-inositol acyltransferase (1-O-IAGlc-InsAc), is another member of the serine carboxypeptidase-like (SCPL) acyltransferase family.  相似文献   

15.
The Agrobacterium tumefaciens T-DNA gene iaaM was introduced by leaf-disc transformation into transgenic tobacco (Nicotiana tabacum) plants expressing the iaaH gene. Regenerated calli were screened for the presence of indole-3-acetamide (IAM), by gas chromatography-multiple ion monitoring-mass spectrometry, and IAM-containing calli were further analyzed for free and conjugated indoleacetic acid (IAA). It was found that transgenic calli on average contained twice as much free IAA and three times more conjugated IAA than calli from wild-type plants. About 40% of the transformed calli could be regenerated to plants. The distribution of free and conjugated IAA was measured in transformed plants with a normal phenotype and compared with equivalent wild-type plants. The IAA content of transgenic plants was only slightly increased, whereas IAA-conjugate levels were enhanced significantly. These data suggest that conjugation of IAA may serve as a regulatory mechanism, contributing to maintenance of steady-state IAA pool sizes during tobacco growth and development.  相似文献   

16.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

17.
A biologically active and photolabile auxin analog, 5-azido-[7-3H]indole-3-acetic acid ([3H]N3IAA), was used to search for auxin-binding proteins in cytosolic extracts from maize coleoptiles (Zea mays L.) and identified a protein with a molecular mass of 60 kDa (p60). Binding of [3H]N3IAA is highly specific as demonstrated by competition analysis with functionally relevant auxin analogs. p60 is found in coleoptiles and roots of etiolated maize seedlings and was detected in cytosolic as well as in microsomal fractions. The protein binds to 1-naphthylacetic acid (1-NAA) sepharose and is eluted with auxins. A purification scheme resulting in homogenous p60 protein was devised and it was shown that p60 has β-d -glucoside glucohydrolase activity (E.C.3.2.1.21). The hydrolytic activity of p60 for the synthetic substrate p-nitro-phenyl-β-d -glucopyranoside is diminished by 1-NAA. p60 shows high substrate specificity since it hydrolyzes indoxyl-O-glucoside, but not β-(1,4)-cellobiose, IAA-inositol or IAA-amino acid conjugates. The present data suggest that p60 might be involved in the hydrolysis of auxin conjugates.  相似文献   

18.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

19.
Gas chromatography-mass spectrometric analyses of purified extracts from cultures of Rhizobium phaseoli wild-type strain 8002, grown in a non-tryptophan-supplemented liquid medium, demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol (IEt), indole-3-aldehyde and indole-3-methanol (IM). In metabolism studies with 3H-, 14C- and 2H-labelled substrates the bacterium was shown to convert tryptophan to IEt, IAA and IM; IEt to IAA and IM; and IAA to IM. Indole-3-acetamide (IAAm) could not be detected as either an endogenous constituent or a metabolite of [3H]tryptophan nor did cultures convert [14C]IAAm to IAA. Biosynthesis of IAA in R. phaseoli, thus, involves a different pathway from that operating in Pseudomonas savastanio and Agrobacterium tumefaciens-induced crown-gall tumours.Abbreviations IAA indole-3-acetic acid - IAld indole-3-aldehyde - IAAm indole-3-acetamide - IEt indole-3-ethanol - IM indole-3-methanol - HPLC-RC high-performance liquid chromatography-radio counting - GC-MS gas chromatography-mass spectrometry  相似文献   

20.
By means of gas chromatography-selected ion monitoring-mass spectrometry using an isotope-dilution assay with 4,5,6,7-tetradeutero-indole-3-acetic acid as the internal standard, indole-3-acetic acid has been estimated to be present in aseptically cultured gametophytes of wild-type Physcomitrella patens (Hedw.) B.S.G. at a level of 0.075 g g–1 dry weight or 2.1 ng g–1 fresh weight.Abbreviations IAA indole-3-acetic acid - d4IAA 4,5,6,7-tetra-deutero-indole-3-acetic acid - [14C]IAA indole-3-[2-14C]-acetic acid - GC-SIM-MS gas chromatography-selected ion monitoring-mass spectrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号