首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

2.
Abstract The Argentine ant (Linepithema humile Mayr) is a worldwide invasive pest species that has been associated with losses of native ant and non‐ant invertebrates in its introduced range. To date, few studies have investigated the effects of Argentine ants on native invertebrates in Australia. This study assessed the effects of Argentine ants on community composition of invertebrates, with particular focus on resident ant communities and functional groups. In this study, the author compared the composition and abundances of invertebrates between invaded and uninvaded locations at four paired sites in Adelaide, South Australia. The results showed that there were significantly fewer non‐Argentine ants at invaded sites than at uninvaded sites. In particular, ants from the two common and widespread genera Iridomyrmex and Camponotus showed decreased abundances at the invaded sites. Multidimensional scaling analyses revealed differences in the composition of ant communities at the invaded and uninvaded sites, with uninvaded sites characterized by a similar native ant species composition, while communities at the invaded sites displayed much greater variability in species composition. These results suggest that the presence of Argentine ants may have a negative effect on particular ant genera and functional groups, with likely disruptions to ecosystem processes.  相似文献   

3.
The Argentine ant, Linepithema humile (Mayr), is an invasive species that has been associated with various negative impacts in native communities around the world. These impacts, as for other invasive ants, are principally towards native ant species, and impacts on below-ground processes such as decomposition remain largely unexplored. We investigated the relationship between Argentine ants and invertebrate fauna, litter decomposition and soil microbial activity between paired invaded and uninvaded sites at two locations in Auckland, New Zealand, where there has been no research to date on their impacts. We examined the diversity and composition of invertebrate and microorganisms communities, and differences in soil and litter components. The composition of invertebrates (Order-level, ant and beetle species) was different between invaded and uninvaded sites, with fewer ants, isopods, amphipods, and fungus-feeding beetles at the invaded sites, whereas Collembola were more abundant at the invaded sites. There were significant differences in soil chemistry, including higher carbon and nitrogen microbial biomass at uninvaded sites. Several litter components were significantly different for Macropiper excelsum. The fibre content of litter was higher, and key nutrients (e.g. nitrogen) were lower, at invaded sites, indicating less breakdown of litter at invaded sites. A greater knowledge of the history of invasion at a site would clarify variation in the impacts of Argentine ants, but their persistence in the ground litter layer may have long-term implications for soil and plant health in native ecosystems.  相似文献   

4.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

5.
Effects of the invasive Argentine ant, Linepithema humile (Mayr), on a myrmecophilous butterfly, Narathura bazalus (Hewiston), were investigated in the field in western Japan. Larvae of N. bazalus were attended by workers of Argentine ants in invaded parks and of ten native and one cosmopolitan ant species in uninvaded parks. The abundance of eggs and larvae were not significantly different between invaded and uninvaded parks. Pupal weight and parasitized ratio by tachinid flies were also not different between the two types of parks. These results indicate that the role of Argentine ants for the butterfly might be almost equivalent to the native ants.  相似文献   

6.
Mutualisms contribute in fundamental ways to the origin, maintenance and organization of biological diversity. Introduced species commonly participate in mutualisms, but how this phenomenon affects patterns of interactions among native mutualists remains incompletely understood. Here we examine how networks of interactions among aphid‐tending ants, ant‐tended aphids, and aphid‐attacking parasitoid wasps differ between 12 spatially paired riparian study sites with and without the introduced Argentine ant Linepithema humile in southern California. To resolve challenges in species identification, we used DNA barcoding to identify aphids and screen for parasitoid wasps (developing inside their aphid hosts) from 170 aphid aggregations sampled on arroyo willow Salix lasiolepis. Compared to uninvaded sites, invaded sites supported significantly fewer species of aphid‐tending ants and ant‐tended aphids. At invaded sites, for example, we found only two species of ant‐tended aphids, which were exclusively tended by L. humile, whereas at uninvaded sites we found 20 unique ant–aphid interactions involving eight species of ant‐tended aphids and nine species of aphid‐tending ants. Ant–aphid linkage density was thus significantly lower at invaded sites compared to uninvaded sites. We detected aphid parasitoids in 14% (28/198) of all aphid aggregations. Although the level of parasitism did not differ between invaded and uninvaded sites, more species of wasps were detected within uninvaded sites compared to invaded sites. These results provide a striking example of how the assimilation of introduced species into multi‐species mutualisms can reduce interaction diversity with potential consequences for species persistence.  相似文献   

7.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

8.
Land‐use intensification is a major driver of local species extinction and homogenization. Temperate grasslands, managed at low intensities over centuries harbored a high species diversity, which is increasingly threatened by the management intensification over the last decades. This includes key taxa like ants. However, the underlying mechanisms leading to a decrease in ant abundance and species richness as well as changes in functional community composition are not well understood. We sampled ants on 110 grassland plots in three regions in Germany. The sampled grasslands are used as meadows or pastures, being mown, grazed or fertilized at different intensities. We analyzed the effect of the different aspects of land use on ant species richness, functional trait spaces, and community composition by using a multimodel inference approach and structural equation models. Overall, we found 31 ant species belonging to 8 genera, mostly open habitat specialists. Ant species richness, functional trait space of communities, and abundance of nests decreased with increasing land‐use intensity. The land‐use practice most harmful to ants was mowing, followed by heavy grazing by cattle. Fertilization did not strongly affect ant species richness. Grazing by sheep increased the ant species richness. The effect of mowing differed between species and was strongly negative for Formica species while Myrmica and common Lasius species were less affected. Rare species occurred mainly in plots managed at low intensity. Our results show that mowing less often or later in the season would retain a higher ant species richness—similarly to most other grassland taxa. The transformation from (sheep) pastures to intensively managed meadows and especially mowing directly affects ants via the destruction of nests and indirectly via loss of grassland heterogeneity (reduced plant species richness) and increased soil moisture by shading of fast‐growing plant species.  相似文献   

9.
Invasive ants are notorious for directly displacing native ant species. Although such impacts are associated with Argentine ant invasions (Linepithema humile) worldwide, impacts within natural habitat are less widely reported, particularly those affecting arboreal ant communities. Argentine ants were detected in North Carolina mixed pine-hardwood forest for the first time but were localized on and around loblolly pines (Pinus taeda), probably because of association with honeydew-producing Hemiptera. We explored the potential impacts of L. humile on arboreal and ground-foraging native ant species by comparing interspersed loblolly pines invaded and uninvaded by Argentine ants. Impacts on native ants were assessed monthly over 1 yr by counting ants in foraging trails on pine trunks and in surrounding plots using a concentric arrangement of pitfall traps at 1, 2, and 3 m from the base of each tree. Of floristics and habitat variables, higher soil moisture in invaded plots was the only difference between plot types, increasing confidence that any ant community differences were caused by Argentine ants. Overall patterns of impact were weak. Composition differed significantly between Argentine ant invaded and uninvaded trunks and pitfalls but was driven only by the presence of Argentine ants rather than any resulting compositional change in native ant species. Native ant abundance and richness were similarly unaffected by L. humile. However, the abundance of individual ant species was more variable. Although numbers of the arboreal Crematogaster ashmeadi (Myrmicinae) declined on and around invaded pines, epigeic Aphaenogaster rudis (Myrmicinae) remained the most abundant species in all plots. Argentine ant densities peaked in late summer and fall, therefore overlapping with most native ants. Unexpected was their continued presence during even the coldest months. We provide evidence that Argentine ants can invade and persist in native North Carolina forests, probably mediated by pine-associated resources. However, their localized distribution and minimal impact on the native ant fauna relative to previously described invasions requires further resolution.  相似文献   

10.
1. Myrmica rubra (European fire ant) has invaded northern latitude coastal areas in North America. This macroscale distribution suggests that M. rubra is moisture‐ and temperature‐limited, but the distribution of the invaded range may reflect the legacy of original introduction locations preserved by limited dispersal. 2. This study examined a two‐decade population change in M. rubra (1994–2015) and the microscale abiotic (moisture and temperature), biotic (plants), anthropogenic (pesticide) and physiological (thermal tolerance) limits on the invasion at the Tifft Nature Preserve in Buffalo, NY (U.S.A.). Changes in the abundance of native ants and other invertebrates were also examined. 3. Despite localised declines with pesticide treatments, overall M. rubra forager abundance increased 27% between 1994 and 2015. Abundance increased the most in the warmest areas (native ants were unaffected by temperature), but M. rubra colony locations were strongly linked to higher soil moisture and lower soil temperature. Myrmica rubra ants also exhibited relatively low thermal tolerances consistent with high‐latitude and high‐elevation ants. 4. Where local M. rubra populations increased the most, native ant species decreased, and where local M. rubra populations declined, native ant species increased. Some arthropod species had lower abundance with M. rubra presence, but the impacts were less striking. 5. Myrmica rubra population growth was promoted at the microhabitat scale where relatively higher temperatures prompted foraging, and relatively lower temperatures and high moisture supported nesting. These results suggest that macroscale M. rubra invaded‐range distributions in northern climates near coastal areas are replicated at the microscale where the ant prefers cooler, moister microsites.  相似文献   

11.
Goldenrods (Solidago sp.) are currently one of the most invasive plant species in Central Europe. They threaten abandoned semi-natural wet grasslands which are extremely vulnerable to plant succession and invasions. We assessed whether Solidago invasion affects ants, keystone organisms essential to proper ecosystem functioning and to the existence of myrmecophilous Phengaris butterflies. Ten meadows containing 60 plots with and without goldenrods were studied. We found a strong, negative dependence between the presence of goldenrod cover and the number of ant nests (more than 50 % reduction compared to control) as well as the number of species, and changes in species composition. Myrmica ants, essential hosts for Phengaris larvae, were among the most affected species by goldenrod invasion. Immediate action should be undertaken for restoration and maintenance of biodiversity hotspots affected by goldenrod invasion.  相似文献   

12.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

13.
Predator–prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.  相似文献   

14.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

15.
Ant invasions exert a range of effects on recipient communities, from displacement of particular species to more complex community disruption. While species loss has been recorded for a number of invasion events, a little examined aspect of these invasions is the mechanisms for coexistence with resident ant species.The yellow crazy ant, Anoplolepis gracilipes (Smith), is considered one of the world’s worst ant invaders and has recently undergone rapid population growth in Tokelau. We surveyed the ground-dwelling ant fauna in two plots on each of five invaded and three uninvaded islands across two atolls in Tokelau to examine community characteristics of the ant fauna in areas with and without yellow crazy ants. We also used three types of food bait (tuna, jam and peanut butter) to experimentally test if species are able to coexist by consuming different food resources. Anoplolepis gracilipes was found to coexist with two to six other ant species at any one site, and coexisted with a total of 11 ant species. Four species never co-occurred with A. gracilipes. Non-metric multidimensional scaling showed significant differences in community composition and the relative abundance of species between areas that had, and had not, been invaded by A. gracilipes. The number of other ant species was significantly lower in communities invaded by the yellow crazy ant, but did not decline with increasing A. gracilipes abundance, indicating that impacts were independent of population density. The yellow crazy ant dominated all tuna and jam baits, but had a low attendance on peanut butter, allowing four other ant species to access this resource. Our results demonstrate community level impacts of an ant invader on a tropical oceanic atoll and suggest that differing use of food resources can facilitate coexistence in ant communities. Received 11 September 2006; revised 15 January 2007; accepted 22 February 2007.  相似文献   

16.
Honeydew‐producing psyllids are an important pest of eucalyptus (Myrtaceae) in California, USA, and may influence surrounding litter arthropod communities. In particular, the introduced Australian psyllids Glycaspis brimblecombei Moore and Eucalyptolyma maideni Froggatt (both Hemiptera: Psyllidae) may facilitate the prevalence of invasive ant species. We examined ground‐dwelling arthropod communities under eucalyptus trees infested by psyllids. We used a model comparison approach to examine the association of psyllid infestation, ant abundance, and environmental factors with ground arthropod abundance and richness. We found a significant positive association between ant activity on eucalyptus trees and psyllid abundance. Higher psyllid abundance and higher Argentine ant abundance were associated with increased arthropod richness. Irrigation was also associated with increased arthropod richness and abundance. Regardless of location collected, arthropod communities collected in pitfall traps under trees with high psyllid abundance had high similarity to arthropod communities under trees with high ant activity. Abundance of isopods was positively associated with both ant and psyllid abundance. Other arthropod groups differed in their association with ants and psyllids. Argentine ants may exacerbate pest impacts and may also decrease the effectiveness of biological control programs for eucalyptus lerp psyllids.  相似文献   

17.
Maculinea butterflies obligatory parasitize certain species of Myrmica ants. Thus, the presence of the host ant species is a limiting factor for the survival of a Maculinea population. Here, we analyse the influence of vegetation structure and ground temperature on ant diversity and abundance on Maculinea habitats, with the final aim of identifying the environmental variables determining patterns of variation in species composition in order to recommend a mowing regime that will promote our three target species: Maculinea teleius, M. nausithous and M. alcon. Experimental plots with different mowing regimes were established at eight sites in South-Eastern Germany, a region which still contains a number of relatively large, stable populations of these threatened butterfly species. Among the seven different ant species recorded, four belong to the genus Myrmica (M. scabrinodis, M. rubra, M. ruginodis and M. vandeli). Among these, M. scabrinodis results most abundant at all sites. In a CCA analysis of environmental variables recorded at the studied plots, ant species diversity appears largely determined by litter cover, mean temperature, and mean grass cover. Mowing once a year, in the second half of September, after the larvae have left their host plants, enhances the abundance of Myrmica ants in the meadows, and would be the best management compromise for all three species.  相似文献   

18.
Cork oak forests invaded by the Argentine ant Linepithema humile have a lower abundance and biomass of arthropod prey for birds than uninvaded forests. We studied whether the biomass of breeding insectivorous birds was also lower in invaded areas. We explored this and other possible effects of the ant invasion on the bird community by censusing birds in transects located in four invaded and four uninvaded forest sites in Catalonia (NE Spain) for 3 years. Redundancy analysis showed only slight differences in the community composition between forests. Two insectivorous species, Luscinia megarhynchos and Fringilla coelebs, tended to be less abundant in invaded areas although two others, Phylloscopus bonelli and Sylvia melanocephala, showed the opposite trend. Overall, the differences in prey biomass between invaded and uninvaded areas did not entail a biomass shift in the guild of insectivorous birds, regardless of whether they were shrub or canopy foragers. The main role of the habitat structure in determining bird densities and food resources being non-limiting in the studied forests are two possible non-exclusive explanations for this inconsistency. At today’s levels, the Argentine ant invasion does not appear to have greatly determined the insectivorous bird assemblage of the forests evaluated.  相似文献   

19.
The timing and abundance of flower production is important to the reproductive success of angiosperms as well as pollinators and floral and seed herbivores. Exotic plants often compete with native plants for space and limiting resources, potentially altering community floral dynamics. We used observations and a biomass-removal experiment to explore the effects of an invasive exotic flowering plant, Linaria vulgaris, on community and individual species flowering phenology and abundance in subalpine meadows in Colorado, USA. Invasion by L. vulgaris was associated with a shift in both the timing and abundance of community flowering. Invaded plant communities exhibited depressed flowering by 67% early in the season relative to uninvaded communities, but invaded sites produced 7.6 times more flowers than uninvaded sites once L. vulgaris began flowering. This increase in flowers at the end of the season was driven primarily by prolific flowering of L. vulgaris. We also found lower richness and evenness of resident flowering species in invaded plots during the period of L. vulgaris flowering. At the species level, a common native species (Potentilla pulcherrima) produced 71% fewer flowers in invaded relative to uninvaded plots, and the species had reduced duration of flowering in invaded relative to uninvaded sites. This result suggests that L. vulgaris does not simply alter the flowering of subordinate species but also the flowering of an individual common species in the plant community. We then used observational data to explore the relationship between L. vulgaris density and resident floral production but found only partial evidence that higher densities of L. vulgaris were associated with stronger effects on resident floral production. Taken together, results suggest that a dominant invasive plant can affect community and individual-species flowering.  相似文献   

20.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号