首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
3,4,-Methylenedioxymethamphetamine (MDMA; 'ecstasy') acts at monoamine nerve terminals to alter the release and re-uptake of dopamine and 5-HT. The present study used microdialysis in awake rats to measure MDMA-induced changes in extracellular GABA in the ventral tegmental area (VTA), simultaneous with measures of extracellular dopamine (DA) in the nucleus accumbens (NAC) shell. (+)-MDMA (0, 2.5, 5 and 10 mg/kg, i.p.) increased GABA efflux in the VTA with a bell-shaped dose-response. This increase was blocked by application of TTX through the VTA probe. MDMA (5 mg/kg) increased 5-HT efflux in VTA by 1037% (p < 0.05). The local perfusion of the 5-HT(2B/2C) antagonist SB 206553 into the VTA reduced VTA GABA efflux after MDMA from a maximum of 229% to a maximum of 126% of basal values (p < 0.05), while having no effect on basal extracellular GABA concentrations. DA concentrations measured simultaneously in the NAC shell were increased from a maximum of 486% to 1320% (p < 0.05). The selective DA releaser d-amphetamine (AMPH) (4 mg/kg) also increased VTA GABA efflux (180%), did not alter 5-HT and increased NAC DA (875%) (p < 0.05), but the perfusion of SB 206553 into the VTA failed to alter these effects. These results suggest that MDMA-mediated increases in DA within the NAC shell are dampened by increases in VTA GABA subsequent to activation of 5-HT(2B/2C) receptors in the VTA.  相似文献   

2.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

3.
Abstract: The effect of various doses of the serotonin (5-HT) release-inducing agent d -fenfluramine ( d -fenf) on extracellular dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in vivo in the striatum of halothane-anesthetized rats, following systemic and local administration. At 5 and 10 but not 2.5 mg/kg, d -fenf administered intraperitoneally significantly increased DA extracellular concentration and reduced DOPAC outflow. A concentration-dependent enhancement of DA dialysate content was also found following intrastriatal application (5, 10, 25, and 50 µ M ). The bilateral administration of 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, did not modify the effect on extracellular DA concentration of 25 µ M d -fenf locally applied into the striatum. The enhancement of extracellular DA level induced by 25 µ M d -fenf was slightly but significantly reduced by the local application of 25 µ M citalopgram. The blockade of DA uptake sites by nomifensine (0.1, 0.3, and 1 µ M ) did not modify significantly the effect of d -fenf. The rise of DA outflow induced by 25 µ M d -fenf was strongly reduced in the presence of 1 µ M tetrodotoxin (TTX) or by the removal of Ca2+ from the perfusion medium. The results obtained show that d -fenf increases the striatal extracellular DA concentration by a Ca2+-dependent and TTX-sensitive mechanism that is independent of striatal 5-HT itself or DA uptake sites.  相似文献   

4.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

5.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.  相似文献   

6.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

7.
The differential behavioral and neurochemical effects of exogenous L-DOPA in animals with intact versus dopamine (DA)-denervated striata raise questions regarding the role of DA terminals in the regulation of dopaminergic neurotransmission after administration of exogenous L-DOPA. In vivo microdialysis was used to monitor the effect of exogenous L-DOPA on extracellular DA in intact and DA-denervated striata of awake rats. In intact striatum, a small increase in extracellular DA was observed after administration of L-DOPA (50 mg/kg i.p.) but in DA-denervated striatum a much larger increase in extracellular DA was elicited. Additional experiments assessed the role of high-affinity DA uptake and impulse-dependent neurotransmitter release in the effect of exogenous L-DOPA on extracellular DA in striatum. Pretreatment with GBR-12909 (20 mg/kg i.p.), a selective DA uptake inhibitor, enhanced the ability of L-DOPA to increase extracellular DA in intact striatum. However, in DA-denervated striatum, inhibition of DA uptake did not alter the extracellular DA response to L-DOPA. Impulse-dependent neurotransmitter release was blocked by the infusion of tetrodotoxin (TTX; 1 microM), an inhibitor of fast sodium channels, through the dialysis probe. Application of TTX significantly attenuated the L-DOPA-induced increase in extracellular DA observed in striatum of intact rats pretreated with GBR-12909. In a similar manner, TTX infusion significantly attenuated the increase in extracellular DA typically observed in striatum of 6-OHDA-lesioned rats after the administration of L-DOPA. The present results indicate that DA terminals, via high-affinity uptake, play a crucial role in the clearance of extracellular DA formed from exogenous L-DOPA in intact striatum. This regulatory mechanism is absent in the DA-denervated striatum. In addition, this study has shown that DA synthesized from exogenous L-DOPA primarily is released by an impulse-dependent mechanism in both intact and DA-denervated striatum. The latter result suggests an important role for a nondopaminergic neuronal element in striatum that serves as the primary source of extracellular DA formed from exogenous L-DOPA.  相似文献   

8.
The effects of acute and repeated nicotine administration on the extracellular levels of dopamine (DA) in the corpus striatum and the nucleus accumbens were studied in conscious, freely moving rats by in vivo microdialysis. Acute intraperitoneal (i.p.) injection of nicotine (1 mg/kg) increased DA outflow both in the corpus striatum and the nucleus accumbens. Repeated daily injection of nicotine (1 mg/kg, i.p.) for 10 consecutive days caused a significant increase in basal DA outflow both in the corpus striatum and the nucleus accumbens. Acute challenge with nicotine (1 mg/kg, i.p.) in animals treated repeatedly with this drug enhanced DA extracellular levels in both brain areas. However, the effect of nicotine was potentiated in the nucleus accumbens, but not in the corpus striatum. To test the hypothesis that stimulation of 5-HT (5-hydroxytryptamine, serotonin)(2C) receptors could affect nicotine-induced DA release, the selective 5-HT(2C) receptor agonist RO 60-0175 was used. Pretreatment with RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently prevented the enhancement in DA release elicited by acute nicotine in the corpus striatum, but was devoid of any significant effect in the nucleus accumbens. RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently reduced the stimulatory effect on striatal and accumbal DA release induced by an acute challenge with nicotine (1 mg/kg, i.p.) in rats treated repeatedly with this alkaloid. However, only the effect of 3 mg/kg RO 60-0175 reached statistical significance. The inhibitory effect of RO 60-0175 on DA release induced by nicotine in the corpus striatum and the nucleus accumbens was completely prevented by SB 242084 (0.5 mg/kg, i.p.) and SB 243213 (0.5 mg/kg, i.p.), two selective antagonists of 5-HT(2C) receptors. It is concluded that selective activation of 5-HT(2C) receptors can block the stimulatory action of nicotine on central DA function, an effect that might be relevant for the reported antiaddictive properties of RO 60-0175.  相似文献   

9.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

10.
The formation of hydroxyl radicals following the systemic administration of 3,4-methylenedioxymethamphetamine (MDMA) was studied in the striatum of the rat by quantifying the stable adducts of salicylic acid and D-phenylalanine, namely, 2,3-dihydroxybenzoic acid (2,3-DHBA) and p-tyrosine, respectively. The repeated administration of MDMA produced a sustained increase in the extracellular concentration of 2,3-DHBA and p-tyrosine, as well as dopamine. The MDMA-induced increase in the extracellular concentration of both dopamine and 2,3-DHBA was suppressed in rats treated with mazindol, a dopamine uptake inhibitor. Mazindol also attenuated the long-term depletion of serotonin (5-HT) in the striatum produced by MDMA without altering the acute hyperthermic response to MDMA. These results are supportive of the view that MDMA produces a dopamine-dependent increase in the formation of hydroxyl radicals in the striatum that may contribute to the mechanism whereby MDMA produces a long-term depletion of brain 5-HT content.  相似文献   

11.
The effect of the systemic administration of a novel, orally active, catechol-O-methyltransferase (COMT) inhibitor, Ro 40-7592, on the in vivo extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), was studied by transcerebral microdialysis in the dorsal caudate of freely moving rats. Ro 40-7592 (at doses of 3.0, 7.5, and 30 mg/kg p.o.) elicited a marked and long-lasting reduction of HVA, and at doses of 7.5 and 30 mg/kg, an increase of DOPAC output, but it failed to increase DA output. The administration of L-beta-3,4-dihydroxyphenylalanine (L-DOPA, 20 and 50 mg/kg p.o.) with a DOPA decarboxylase inhibitor (benserazide) increased both HVA and DOPAC output, but failed to modify significantly extracellular DA concentrations in dialysates; in contrast, combined administration of L-DOPA+benserazide with Ro 40-7592 (30 mg/kg p.o.) resulted in a significant increase in DA output. Ro 40-7592 prevented the L-DOPA-induced increase in HVA output and markedly potentiated the increase in DOPAC output. To investigate to what extent the increase in extracellular DA concentrations was related to an exocitotic release, tetrodotoxin (TTX) sensitivity was tested. Addition of TTX to Ringer, although abolishing DA output in the absence of L-DOPA, partially reduced it in the presence of L-DOPA+Ro 40-7592 and even more so after L-DOPA without the COMT inhibitor. The results of the present study suggest that metabolism through COMT regulates extracellular concentrations of DA formed from exogenously administered L-DOPA but not of endogenous DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA) on the synthesis of dopamine in the terminals of nigrostriatal and mesolimbic neurons was estimated by measuring the accumulation of 3,4-dihydroxyphenylalanine (DOPA) in the striatum and nucleus accumbens 30 min following the administration of the L-aromatic amino acid decarboxylase inhibitor, 3-hydroxybenzylhydrazine. MDMA produced an increase in DOPA accumulation in the striatum which was greater in magnitude and longer in duration than that in the nucleus accumbens. Although the concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in both the striatum and nucleus accumbens were reduced 3 h following an injection of MDMA (20 mg/kg), 5-HT and 5-HIAA concentrations were significantly reduced only in the striatum 7 days after the administration of MDMA. Pretreatment with a 5-HT2 antagonist, ketanserin, significantly attenuated the reduction in 5-HT concentration in the striatum 3 h following MDMA administration and completely blocked 5-HT depletion at 7 days post administration. Moreover, ketanserin completely blocked MDMA-induced DOPA accumulation in the striatum. The results obtained in these studies suggest that MDMA activates nigrostriatal dopaminergic pathways via 5-HT2 receptors. In addition, these data are supportive of the hypothesis that dopamine plays a role in MDMA-induced 5-HT depletion.  相似文献   

13.
Brain microdialysis and high-performance liquid chromatography with electrochemical detection were used to study the effect of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) on striatal dopamine (DA) release in the anesthetized rat. Systemic administration of L-NAME (10 mg/kg, i.p.) significantly decreased the resting release of DA. The peak effect (23% decrease) was reached 45 min after injection. The inactive enantiomer D-NAME (10 mg/kg, i.p.) or the vehicle (saline, 5 ml/kg i.p.) had no effect on the striatal DA level. Neither treatment altered significantly the concentration of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). To investigate the possible involvement of the DA uptake system L-NAME was injected also in the presence of the DA uptake inhibitor nomifensine. Local application of nomifensine (10 microM in the dialysate medium) increased the extracellular concentration of DA to about eight-fold of the basal value and stabilized it at this higher level. Under these conditions L-NAME (10 mg/kg, i.p.) was not able to alter the striatal DA level. Neither nomifensine nor L-NAME caused any change in the level of DOPAC and HVA. Our data suggest that endogenously produced nitric oxide may influence the activity of the DA transporter which effect may have special importance in the regulation of extracellular transmitter concentration in the striatum.  相似文献   

14.
Destruction of nigrostriatal dopamine (DA) neurons with 6-hydroxydopamine (6-OHDA) early in development results in hyperinnervation of striatum by the serotonergic afferents deriving from the dorsal raphe nucleus. We have used in vivo microdialysis to investigate the degree to which serotonergic neurotransmission in striatum is altered by this increase in the density of serotonin (5-HT) terminals. The effects of several manipulations known to influence 5-HT function on extracellular 5-HT and 5-hydroxyindoleacetic acid in striatum were compared in adult rats treated neonatally with 6-OHDA and in intact adult rats. Basal levels of 5-HT in extracellular fluid (ECF) of striatum were similar in neonatally DA-depleted rats and in intact rats. Perfusion with the 5-HT reuptake blocker, fluoxetine (100 microM), increased 5-HT in striatal ECF of neonatally DA-depleted rats to levels that were threefold greater than those achieved in intact rats. Likewise, K(+)-depolarization of the 5-HT terminals (100 mM in perfusate) or systemic administration of the 5-HT releaser, (+/-)-fenfluramine (10 mg/kg i.p.), increased the concentration of 5-HT in striatal ECF of neonatally DA-depleted rats to levels approximately threefold greater than those observed in striatum of intact rats. These findings indicate that the 5-HT hyperinnervation of striatum that takes place in rats depleted of DA at infancy is associated with an increased capacity for neurotransmitter release in this system. Concomitant increased in high-affinity 5-HT uptake may prevent the occurrence of any measurable changes in the resting concentration of 5-HT in striatal ECF.  相似文献   

15.
X M Guan  W J McBride 《Life sciences》1988,42(25):2625-2631
The effect of local pH on the in vivo efflux of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following administration of d-amphetamine (AMPH) was examined in the striatum of the anesthetized rat using two bilaterally placed push-pull cannulae. At both pH 7.3 and 6.4, the baseline efflux values for DA and DOPAC were approximately 0.2 and 25 pmoles/15 min, respectively. Subcutaneous injection of 2 mg/kg AMPH induced a 3-fold increase of DA release at pH 7.3 and a 21-fold increase of DA release at pH 6.4. In both cases, the maximum was reached at about 30 min after the drug administration. Following the administration of AMPH, the efflux of DOPAC was reduced to the same degree (20% of control values) under both pH conditions. In vitro data showed that the lower pH did not alter the recovery of DA or DOPAC. In addition, release of DA produced by local perfusion with 5 uM AMPH was also greater at the lower pH (50-fold increase over baseline) than at the physiological pH (10-fold increase over baseline). The stimulated DA release produced by local perfusion with 35 mM K+, however, was the same at both pH values. Preliminary experiments also indicated that there was a pH effect for AMPH-induced serotonin (5-HT) release but that the difference in the amount of 5-HT in the two media was not nearly as large as that obtained for DA. The markedly elevated level of extracellular DA at the lower pH might be due to a higher affinity of the DA uptake system for AMPH, thereby producing greater inhibition of DA uptake as well as enhanced DA release. The data also suggest an enhanced affinity of AMPH for 5-HT uptake sites at the lower pH.  相似文献   

16.
In the present study, we have applied the brain microdialysis technique to investigate the effect of the stimulation of adenylate cyclase on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the striatum of freely moving rats. Infusion of 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine, or forskolin produced a significant increase in the release of DA. The effect of 8-Br-cAMP was tetrodotoxin, Ca2+, and dose dependent and was saturable. 8-Br-cAMP also caused an increase in the output of DOPAC and HVA. No effects were seen on the output of 5-HIAA, except at the highest 8-Br-cAMP concentration studied. Infusion of 8-Br-cAMP (25 microM, 1.0 mM, and 3.3 mM) together with infusion of (-)-sulpiride (1 microM) or systemic administration of (+/-)-sulpiride (55 mumol/kg i.p.) produced an additive effect on the release of DA. Infusion or peripheral administration of (-)-N-0437 (1 microM or 1 mumol/kg) both decreased the 8-Br-cAMP-induced increase in the release of DA. These results demonstrate that cyclic AMP may stimulate the release of DA, but it is unlikely that this second messenger is linked to presynaptic D2 receptors controlling the release of DA.  相似文献   

17.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: The effects of two new catechol- O -methyltransferase (COMT) inhibitors, OR-611 and Ro 40-7592, in combination with L-3,4-dihydroxyphenylalanine (L-dopa) with or without carbidopa on extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3- O -methyldopa (3-OMD), and 5-hydroxyindoleacetic acid in rat striatum were studied. A dose of 10 mg/kg i.p. of Ro 40-7592 alone, in contrast to the same dose of OR-611, decreased the dialysate level of HVA and increased that of DOPAC; this dose was thus used to differentiate between the effects of central and peripheral COMT inhibition. L-Dopa (50 mg/kg i.p.) alone slightly increased extracellular levels of DA, DOPAC, and HVA. The effects of L-dopa were potentiated by carbidopa (50 mg/kg i.p.), and even 3-OMD levels in dialysate samples became detectable. Both OR-611 and Ro 40-7592 significantly further increased the DA and DOPAC efflux from striatum produced by L-dopa. This increase was more pronounced when carbidopa was added to the treatment. OR-611 did not modify the effect of L-dopa or carbidopa/L-dopa on dialysate HVA levels, whereas Ro 40-7592 markedly reduced those levels. Both OR-611 and Ro 40-7592 very clearly suppressed dialysate 3-OMD levels produced by carbidopa/L-dopa. Ro 40-7592 was more effective than OR-611 in potentiating the effects of L-dopa or carbidopa/L-dopa. These in vivo data show that the new COMT inhibitors markedly inhibit the O -methylation of L-dopa and increase its availability to brain, which is reflected as increased DA formation. A significant effect can be achieved even by inhibiting only the peripheral COMT activity. The data suggest that COMT inhibitors may be of clinical importance as adjuncts in the treatment of Parkinson's disease.  相似文献   

19.
The extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid in the substantia nigra (SN) and striatum was estimated by microdialysis. The dialysate content of DA from the SN was recorded during infusion of a DA uptake blocker (nomifensine; 5 mumol/L) dissolved in the perfusion fluid. Perfusion of tetrodotoxin (1 mumol/L) produced a virtually complete disappearance of nigral and striatal DA release. Dendritic as well as terminal release of DA was inhibited for several hours when the nerve impulse flow in dopaminergic neurons was blocked by systemic administration of gamma-butyrolactone (750 mg/kg, i.p.). The systemic administration (0.3 mg/kg, i.p.) as well as infusion (1 mumol/L) of the D2 agonist (-)-N-0437 [2-(n-propyl-N-2-thienylethylamino)-5-hydroxytetralin] produced a significant decrease in the release of DA in both the striatum and the SN. DA levels were recorded in the striatum both with and without addition of nomifensine to the perfusion fluid. The decrease in the striatum after (-)-N-0437 was suppressed in the presence of nomifensine. Infusion (1 mumol/L) as well as systemic administration (40 mg/kg) of sulpiride caused a similar increase in the release of striatal DA; this increase was, in both experiments, potentiated by nomifensine coinfusion. Sulpiride administration induced a small increase in the release of nigral DA. Infusion of (-)-N-0437 or (-)-sulpiride into the nigra caused a moderate decrease and increase, respectively, of striatal DA level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号