首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Examination of the type and frequency of damage to the head of spermatozoa using electron microscopy can be used to evaluate the quality of differently treated sperm. This report describes a systematic approach based on 29 morphological categories of sperm heads assessed from discrete regions in raw, chilled and frozen-thawed spermatozoa. Injury occurred principally at the plasma membrane and could be present or absent in all regions. In the anterior segment, when the plasma membrane is present, it can be intact, dilated, very dilated, disrupted, or contain vesicles characteristic of acrosomal reaction-like capacitation changes. When the plasma membrane is absent, the acrosome may be intact, exhibit a complete loss of contents, or retain some contents of the apical ridge and present a very dilated outer acrosomal membrane. The plasma membrane in the equatorial segment and the boundary between regions can be intact, dilated, very dilated or disrupted. The post-acrosomal plasma membrane is classified as intact, dilated or very dilated, whereas the dense lamina is intact, dilated or fragmented. The morphology of the heads most frequently observed in chilled spermatozoa consists of anterior and equatorial segments with a dilated, or dilated and disrupted plasma membrane; a boundary between regions with an intact and dilated plasma membrane; and a post-acrosomal region with an intact plasma membrane and dense lamina, both dilated. In frozen-thawed spermatozoa, the morphology of the heads is more frequently characterised by no plasma membrane and an acrosome showing complete or some loss of contents in the apical ridge and very dilated outer acrosomal membrane, presenting mostly dilated and fragmented dense lamina in the post-acrosomal region. These findings are consistent with the conclusion that the freezing process produces an increase in the degree of damage to the cells when they are subjected to increasing degrees of cold shock. There are still difficulties in developing a good diluent and process for preserving the plasma membrane in ram spermatozoa. This systematisation, using different categories, allows characterisation of multiple transmission electron microscopy images. Thus, the different changes observed due to cryopreservation may be correlated.  相似文献   

2.
Atomic force microscopy has been used to investigate changes in the plasma membrane overlying the head region of mammalian spermatozoa (bull, boar, ram, goat, stallion, mouse, and monkey) during post-testicular development, after ejaculation, and after exocytosis of the acrosomal vesicle. On ejaculated ram, bull, boar, and goat spermatozoa the postacrosomal plasma membrane has a more irregular surface than that covering the acrosome. The equatorial segment, by contrast, is relatively smooth except for an unusual semicircular substructure within it that has a coarse uneven appearance. This substructure (referred to as the equatorial subsegment) is situated adjacent to the boundary between the postacrosomal region and the equatorial segment itself and seems to be confined to the order Artiodactyla as it has not been observed on stallion, mouse, or monkey spermatozoa. The equatorial subsegment develops during epididymal maturation, and following induction of the acrosome reaction with Ca(2+) ionophore A23187, its topography changes from a finely ridged appearance to that resembling truncated papillae. A monoclonal antibody to the equatorial subsegment binds only to permeabilized spermatozoa, suggesting that the subsegment is related to the underlying perinuclear theca that surrounds the sperm nucleus. A role for the equatorial subsegment in mediating fusion with the oolemma at fertilization is discussed.  相似文献   

3.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

4.
Calcium was identified by a pyroantimonate-osmium fixation technique in ram spermatozoa undergoing a spontaneous acrosome reaction induced by incubation of diluted semen at 39°C. Intracellular calcium was only detected in diluted spermatozoa and increased in amount and distribution over 4 hr At 4 hr, the majority of the spermatozoa displayed ultrastructural evidence of an acrosome reaction. Calcium was initially evident on the outer acrosomal membrane in multiparticulate clusters, which were seen to be located on scalloped crests of acrosomal membrane as fusion developed; it was also located in the region of the acrosomal ridge beneath the outer acrosomal membrane. Vesiculation commenced just anterior to the equatorial segment and proceeded anteriorly. As vesiculation advanced, calcium particles became associated with the periphery of the vesicles attached in the region of the fusion between the two membranes, but were never seen inside the vesicles. The equatorial segment was not labelled until much later in the reaction, at which time calcium particles were also evident on the nuclear membrane; vesiculation of the equatorial segment was also noted at this time. Dense labelling of the postacrosomal dense lamina was seen in all incubated spermatozoa. At the anterior margin of this structure the labelling was seen to be in a “sawtooth” arrangement. The disposition of the calcium both temporally and spatially is discussed in relation to its possible mechanisms in bringing about membrane fusion. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Scanning electron microscopy was employed to examine the manner of association between in vitro capacitated spermatozoa and zona-free eggs of the hamster. Spermatozoa with intact acrosomes, which were unable to fuse with eggs, were seen in general associated with egg microvilli in the region of the acrosomal cap. Acrosome-reacting spermatozoa were seen associated with egg microvilli with the dissociating acrosomal caps. Acrosome-reacted spermatozoa, which were able to fuse with eggs, generally associated with egg microvilli by the equatorial segment and the anterior portion of the postacrosomal region. It is inferred that the completion of the acrosome reaction signals changes in the plasma membrane over the equatorial segment of the acrosome and the anterior area of the postacrosomal region which give it a greater affinity to and fusibility with the oolemma.  相似文献   

6.
The spermatozoa of both Clavelina lepadiformis and Ciona intestinalis have architectural features characteristic of ascidian spermatozoa that have been previously described. They have an elongated head (6 microm and 3 microm long, respectively) and a single mitochondrion that is closely applied laterally to the nucleus; they lack a midpiece. The acrosome of Clavelina lepadiformis spermatozoa is a moderately electron-dense, pear-shaped flattened vesicle, approx. 300 nm x 200 nm x 40 nm in length, width, and height, respectively. The acrosome of Ciona intestinalis spermatozoa is a moderately electron-dense, round flattened vesicle with an electron-dense plate in its central region. It is approx. 200 nm x 200 nm x 50 nm in length, width, and height, respectively. During spermiogenesis in both ascidians, several proacrosomal vesicles (50-70 nm in diameter) appear in a blister at the future apex of the spermatids. These vesicles appear to be associated with the inner surface of the plasma membrane enclosing the blister. They come into contact with each other along the inner surface of the plasma membrane and fuse to form a horseshoe-shaped acrosomal vesicle, which becomes a round, flattened vesicle during further differentiation. Some speculations about the mechanism of acrosome differentiation, the possible role of the acrosome during fertilization, and in the speciation of ascidians are presented.  相似文献   

7.
Spermatozoa from the ductus deferens of a naked-tail armadillo, Cabassous unicinctus, were arranged in rouleaux. The sperm heads were wafer-thin, with the acrosome and nucleus flattened together. Dense subacrosomal material in the equatorial segment of the acrosomal region was present on one surface but not on the other.  相似文献   

8.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.  相似文献   

9.
The mammalian acrosome reaction is an exocytotic process that can be analyzed by the technique of freeze-fracture; only sperm cells capacitated in vitro or treated to elicit the acrosome reaction in vitro have been studied, and all pictures published are from material fixed before freezing. All the authors point out the appearance of particle-free areas in the plasma membrane of the acrosomal region during capacitation and before any fusion. This is interpreted as an increase in membrane fluidity as suggested by studies on membrane lipid composition in guinea-pig sperm. We have recently described the induced acrosome reaction in ram spermatozoa. Fusion starts at the limit of the anterior and equatorial segments and progresses forward in the anterior segment along ramified paths, resulting in a fenestration gradient of the acrosomal cap. Fusion propagation may be controlled by fluidity increase in the plasma membrane of the anterior segment, and it is probably inhibited in the equatorial segment by the ordered structure of the acrosomal membrane.  相似文献   

10.
Actin was localized in testicular spermatids and in ionophore-treated ejaculated sperm of boar by use of a monoclonal anti-actin antibody labeled with colloidal gold. With the on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, in the microfilaments of the surrounding Sertoli cells, and in the myoid cells of the tubular wall. Ejaculated sperm, labeled with the preembedding method, showed actin between the plasma membrane and the outer acrosomal membrane of the equatorial segment. Indirect immunofluorescence was positive in the equatorial segment and in the acrosomal cap of intact sperm, whereas reacted sperm at the anterior head region retained fluorescence only in the inner acrosomal membrane. Rhodamine-phalloidin failed to stain intact and reacted sperm. The distribution of actin in sperm head membranes (inner acrosomal membrane, membranes of the equatorial segment), which are retained after the acrosome reaction, is discussed.  相似文献   

11.
The effects of controlled stress, i.e. cooling, upon the distribution of actin in ram spermatozoa were examined to investigate the hypothesis that cytoskeletal proteins are involved in the maintenance of sperm plasma membrane integrity. The normal distribution of actin on the spermatozoon was initially determined. A monoclonal antibody (IgM) interacted exclusively with the post-acrosomal region and the principal piece of the flagellum. By the use of a polyclonal antibody, actin was detected on the acrosome (excluding the equatorial segment), the post-acrosomal region and the whole of the flagellum. The actin was present in its non-filamentous form. Spermatozoa fixed at 39 degrees C and then treated for the immunofluorescent detection of actin with the monoclonal antibody were mostly unstained (proportion stained = 4.4% (+/- 1.6; s.e.m.); n = 8 ejaculates). Provided spermatozoa were permeabilized by greater than 0.025% Triton X-100 before immunofluorescence, actin was localized in the postacrosomal region of all sperm heads, and to a minor extent on the principal piece of the flagellum. Use of the polyclonal antibody confirmed that the post-acrosomal antigen was unmasked by detergent treatment. Slow cooling, over 2-h periods to various temperatures between 5 and 15 degrees C, also induced an increase in the proportion of cells showing post-acrosomal actin immunoreactivity. Cooling through the temperature range 15 to 10 degrees C markedly increased the proportion of immunoreactive cells (mean +/- s.e.m.; 12 +/- 4.5% at 15 degrees C; 27 +/- 4.5% at 10 degrees C; n = 4 ejaculates). Further cooling to 5 degrees C failed to elicit increased staining. Ultrastructural examination of cooled spermatozoa confirmed that a subpopulation of spermatozoa exhibited post-acrosomal actin immunoreactivity after cooling. These results are compatible with the suggestion that actin fulfills a stabilizing function in spermatozoa.  相似文献   

12.
Our previous study has shown that fucoidin, an algal heteropolysaccharide, is a potent inhibitor of sperm-zona binding in the guinea pig, hamster and human. To visualize the surface site of fucoidin binding, a biotinated derivative (B-Fuc) of the native fucoidin was prepared. B-Fuc retained the inhibitory activity and was used in conjunction with FITC-avidin to localize its binding sites on guinea pig spermatozoa using fluorescence microscopy. In living acrosome-reacted spermatozoa, B-Fuc bound predominantly to the inner acrosomal membrane and equatorial segment domains. The binding was effectively competed by a 10-fold excess of native fucoidin, but not by a 10-fold excess of heparin or a 20-fold excess of biotinated normal rabbit serum IgG. B-Fuc binding patterns on dead spermatozoa were quite different from that of living spermatozoa. The post-acrosomal region, rather than the inner acrosomal membrane and equatorial domains, was intensely labeled. This indicates the importance of using living cells in assessing true surface binding sites whenever possible. We conclude that the inner acrosomal membrane and/or equatorial domains are critical for zona binding in the guinea pig.  相似文献   

13.
Mammalian spermatozoa must undergo many changes to be able to fertilize the oocyte. One of these changes, the acrosome reaction, has been established as a requisite for gamete membrane fusion to occur; it consists of the fusion and vesiculation of the sperm plasma membrane with the outer acrosomal membrane of the principal segment of the acrosome. Reaction of the equatorial segment has occasionally been observed. The objective of the present work was to determine whether the presence of the sperm plasma membrane over the equatorial segment is necessary for gamete membrane fusion to occur. Golden hamster spermatozoa were capacitated in vitro in TAPL 10K, and the maximum possible percentage of acrosome reaction was determined at 82.79% + 1.69% SD (P = 0.27; r = 0.21). Ultrastructural studies showed that 93.6% of the reacted spermatozoa in this population had their principal and equatorial segments reacted. The fertilizing ability of these spermatozoa was assayed using zona-free hamster oocytes. The percentage of fertilized ova obtained was 98.8% (308/312). Ultrastructural studies snowed the presence of spermatozoa with reacted equatorial segment inside the cytoplasm of immature oocytes. The evidence presented in this work demonstrates that the plasma membrane of spermatozoa with reacted equatorial segment retains its ability to fuse with the oocyte.  相似文献   

14.
The diversity of the structural organization of the spermatozoa of African murid rodents is described at the light and transmission electron microscopical level of resolution. In most species the sperm head is falciform in shape but it varies somewhat in overall breadth, width, and length. A typical perforatorium is present and the acrosome splits into a large head cap over the convex surface and a smaller ventral segment similar to the sperm head of most Asian and Australasian murids. In a few species, however, the morphology is very different. In Acomys and Uranomys spermatozoa, the apical hook is more bilaterally flattened, has a large apical acrosomal region, and no separate ventral segment. Two species of Aethomys have, in addition to an apical hook, a 4μ long extension of the cytoskeletal material that projects from the concave surface of the sperm head, whereas in Dasymys two large ventral processes extend from the upper concave region which contain nuclear material basally and a huge extension of cytoskeleton apically. In Aethomys chrysophilus type B, the sperm nucleus is unique in form and often has a central region in which threads of chromatin can be seen; it is capped by a massive acrosome whose apical segment is complex and convoluted in structure. Stochomys longicaudatus appears to have a conical sperm head, and in all three Lophuromys species the sperm head is spatulate in shape with the flat, plate-like nucleus capped by a thin acrosome. The evolutionary trends in changes of sperm head shape and design of these rodents are discussed. It is suggested that some of the differences in morphology may relate to the variation in structural organization of the coats around the egg through which the spermatozoon has to pass in order for fertilization to occur.  相似文献   

15.
The equatorial subsegment (EqSS) was originally identified by atomic force microscopy as a discrete region within the equatorial segment of Artiodactyl spermatozoa. In this investigation, we show that the EqSS is enriched in tyrosine phosphorylated proteins and present preliminary evidence for its presence in mouse and rat spermatozoa. The anti-phosphotyrosine monoclonal antibody (McAb) 4G10 bound strongly and discretely to the EqSS of permeabilized boar, ram, and bull spermatozoa. It also bound to a small patch on the posterior acrosomal region of permeabilized mouse and rat spermatozoa, suggesting that the EqSS is not restricted to the order Artiodactyla. An anti-HSPA1A (formerly Hsp70) antibody recognized the EqSS in boar spermatozoa. Immunogold labeling with McAb 4G10 localized the tyrosine phosphorylated proteins to the outer acrosomal membrane. This was verified by freeze-fracture electron microscopy, which identified the EqSS in three overlying membranes, the plasma membrane, outer acrosomal membrane, and inner acrosomal membrane. In all five species, tyrosine phosphorylated proteins became restricted to the EqSS during sperm maturation in the epididymis. The major tyrosine phosphorylated proteins in the EqSS of boar and ram spermatozoa were identified by mass spectrometry as orthologs of human SPACA1 (formerly SAMP32). Immunofluorescence with a specific polyclonal antibody localized SPACA1 to the equatorial segment in boar spermatozoa. We speculate that the EqSS is an organizing center for assembly of multimolecular complexes that initiate fusion competence in this area of the plasma membrane following the acrosome reaction.  相似文献   

16.
Experiments to bind fluorescein-conjugated Arachis hypogea (peanut) agglutinin (FITC-PNA) to washed human spermatozoa demonstrated that this lectin binds to the acrosome region in air-dried preparations. Since there was no binding when labelling was performed in suspension, and comparable labelling to that seen in air-dried preparations was seen when spermatozoa treated with saponin (to lyse the plasma membrane) were labelled in suspension, the lectin must bind to an intracellular structure, probably the outer acrosomal membrane. This was confirmed by ultrastructural localization of colloidal gold-conjugated lectin in saponin-treated spermatozoa. Treatment of spermatozoa with the detergent Nonidet P-40 caused a marked change in the binding pattern: more spermatozoa showed binding in the equatorial segment of the acrosome with no binding in the anterior cap region. A comparable, less marked, change was seen when spermatozoa were incubated overnight under conditions known to support the capacitation and spontaneous acrosome reactions. Treatment with the calcium ionophore A23187 for 1 h to induce acrosome reactions artificially in uncapacitated spermatozoa resulted in the appearance of patchy acrosome fluorescence. From these experiments it is concluded that PNA binds specifically to the outer acrosomal membrane, and that FITC-PNA-labelling may be used to monitor the human sperm acrosome reaction.  相似文献   

17.
Whole mount and thin section preparations of intact and selectively disrupted hamster spermatozoa revealed an organized array of cytoplasmic filaments associated with specific regions of the acrosome. The filaments were localized along the ventral surface of the spermatozoon and extended from its tip, distally to the anterior margin of the equatorial segment. Individual filaments were 11-13 nm in diameter and they were aligned parallel to one another to form a two-dimensional sheet oriented in the long axis of the spermatozoon. The filament complex adhered preferentially to the cytoplasmic surface of the outer acrosomal membrane rather than the plasma membrane. Examination of disrupted spermatozoa revealed that the distribution of this cytoskeletal assembly correlated with the distribution of a specific acrosomal matrix component. The possible role of this complex in the acrosome reaction or in the organization of acrosomal matrix domains is discussed.  相似文献   

18.
Localization of sialyl residues on unfixed ejaculated ram sperm membrane using the direct covalent probes of either ferritin hydrazide or latex hydrazide revealed a unique regional distribution on the plasmalemma covering the sperm head only. Three different labelling zones were identified based on the intensity and the nature of the sialyl glycoconjugates: a patchy-like zone which included the plasma membrane overlaying the post-nuclear cap and the convex side of the apical body of the acrosome; highly ordered heavily labelled zones including the plasmalemma adjacent to the concave apical body of the acrosome and to the posterior part of the equatorial acrosomal segment; a paucity-labelling zone which included the plasma membrane underlying the principal acrosomal region and the anterior part of the equatorial acrosomal segment. The possible physiological role of the highly ordered labelled zones is discussed.  相似文献   

19.
Ion channels are pivotal to many aspects of sperm physiology and function. We have used the patch clamp technique to investigate the distribution of ion channels in the plasma membrane of the head of human spermatozoa. We report that three types of activity are common in the equatorial and acrosomal regions of the sperm head. Two of these (a chloride-permeable anion channel showing long stable openings and a second channel which flickered between open and closed states and was dependent upon cytoplasmic factors for activity) were localised primarily to the equatorial segment. A third type, closely resembling the flickering activity but with different voltage sensitivity of P(open), was more widely distributed but was not detectable over the anterior acrosome. In the anterior acrosomal area channels were present but showed very low levels of spontaneous activity. A unique feature of channel activity in the sperm equatorial region was co-localisation into mixed clusters, most patches were devoid of activity but 'active' patches typically contained two or more types of activity (in a single 200-300 nM diameter patch). We conclude that ion channels in the sperm membrane show regionalisation of type and activity and that the channels are clustered into functional groups, possibly interacting through local effects on membrane potential.  相似文献   

20.
SPACA1 is a membrane protein that localizes in the equatorial segment of spermatozoa in mammals and is reported to function in sperm-egg fusion. We produced a Spaca1 gene-disrupted mouse line and found that the male mice were infertile. The cause of this sterility was abnormal shaping of the sperm head reminiscent of globozoospermia in humans. Disruption of Spaca1 led to the disappearance of the nuclear plate, a dense lining of the nuclear envelope facing the inner acrosomal membrane. This coincided with the failure of acrosomal expansion during spermiogenesis and resulted in the degeneration and disappearance of the acrosome in mature spermatozoa. Thus, these findings clarify part of the cascade leading to globozoospermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号