首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

2.
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.  相似文献   

3.
We recently showed that estrogen induces expression of the anti-apoptotic protein, Bcl-2 in MCF-7 human breast cancer cells. Since estrogen-dependent breast tumours can regress following estrogen withdrawal, we hypothesized that stable Bcl-2 expression would prevent estrogen-withdrawal induced regression of MCF-7 tumours. We therefore established tumours in ovariectomized female nude mice implanted with an estrogen-release pellet using untransfected MCF-7 cells or MCF-7 cells stably transfected with a Bcl-2 cDNA sense or antisense expression vector. All tumours grew at similar rates indicating that Bcl-2 levels have no effect on tumour formation. After removal of the estrogen pellet, Bcl-2 antisense tumours and untransfected MCF-7 tumours regressed means of 49% and 52%, respectively, after estrogen pellet removal whereas Bcl-2 sense tumours were significantly stabilized. Regressing tumours displayed characteristics of apoptotic cells. These results show that Bcl-2 can prevent hormone-dependent breast tumour regression and are consistent with the notion that decreased Bcl-2 levels following estrogen withdrawal renders hormone-dependent breast tumour cells sensitive to apoptotic regression.  相似文献   

4.
Estrogen rapidly induces expression of the proto-oncogene c-myc. c-Myc is required for estrogen-stimulated proliferation of breast cancer cells, and deregulated c-Myc expression has been implicated in antiestrogen resistance. In this report, we investigate the mechanism(s) by which c-Myc mediates estrogen-stimulated proliferation and contributes to cell cycle progression in the presence of antiestrogen. The MCF-7 cell line is a model of estrogen-dependent, antiestrogen-sensitive human breast cancer. Using stable MCF-7 derivatives with inducible c-Myc expression, we demonstrated that in antiestrogen-treated cells, the elevated mRNA and protein levels of p21(WAF1/CIP1), a cell cycle inhibitor, decreased upon either c-Myc induction or estrogen treatment. Expression of p21 blocked c-Myc-mediated cell cycle progression in the presence of antiestrogen, suggesting that the decrease in p21 is necessary for this process. Using RNA interference to suppress c-Myc expression, we further established that c-Myc is required for estrogen-mediated decreases in p21(WAF1/CIP1). Finally, we observed that neither c-Myc nor p21(WAF1/CIP1) is regulated by estrogen or antiestrogen in an antiestrogen-resistant MCF-7 derivative. The p21 levels in the antiestrogen-resistant cells increased when c-Myc expression was suppressed, suggesting that loss of p21 regulation was a consequence of constitutive c-Myc expression. Together, these studies implicate p21(WAF1/CIP1) as an important target of c-Myc in breast cancer cells and provide a link between estrogen, c-Myc, and the cell cycle machinery. They further suggest that aberrant c-Myc expression, which is frequently observed in human breast cancers, can contribute to antiestrogen resistance by altering p21(WAF1/CIP1) regulation.  相似文献   

5.
The development of radio-resistant tumor cells might be overcome by the use of tumor selective cytotoxic agents in combination with radiation treatment of cancer. Thus, we are exploring the radiomodifying potential of D7, a tumor-inhibitory compound derived from a plant product, diospyrin, in breast carcinoma cells, MCF-7. The present study indicated that D7 could enhance the radiation-induced cytotoxicity and apoptosis through down-regulation of the anti-apoptotic Bcl-2 and COX-2 gene expression, and up-regulation of pro-apoptotic genes, like p53 and p21. The higher expression of PUMA, a pro-apoptotic protein was also observed in the combination treatment. Effect of D7 on up-regulation of p21 expression in irradiated MCF-7 cells was concomitant with the cell cycle arrest in the G1 phase. Thus, it was concluded that D7 could sensitize the effect of radiation in breast carcinoma by regulating the gene expression involved in cell cycle and apoptosis.  相似文献   

6.
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.  相似文献   

7.
新型双核铂(Ⅱ)配合物{[cis-Pt(NH3)2Cl]2L}(NO3)2(L=4,4′-methylenedianiline)对多种肿瘤细胞有一定的抑制作用,但作用机制不明。本研究以顺铂为对照,探讨了该双核铂(Ⅱ)配合物对MCF-7细胞增殖抑制、细胞周期、细胞凋亡及凋亡相关因子p53、P-p53(ser15)、p21、Bcl-2、Bak、Cleaved- caspase-3、cPARP(cleavage of poly(ADP-ribose)polymerase)的影响。MTT法检测配合物或顺铂在不同浓度或不同作用时间后对MCF-7增殖的影响,其中作用48 h后配合物对MCF-7的IC50为1.59 μmol/L,顺铂为7.95 μmol/L。原位移植瘤实验显示,配合物组肿瘤抑制率为54.1%,高于顺铂组(36.2%)。同等条件下,配合物处理的MCF-7细胞,经Hoechst33342染色后出现明显细胞体积缩小和染色质固缩现象。流式细胞检测技术分析显示,经该配合物处理后,大部分MCF-7细胞停滞在S期,并出现了细胞膜外表面的磷脂酰丝氨酸外翻与线粒体内膜急剧下降等典型的细胞凋亡现象。Western 印迹结果显示,随着配合物浓度增加,Cleaved-caspase-3、p53、P-p53(ser15)、cPARP、Bak蛋白表达增强,而p21、Bcl-2表达水平下调。上述结果表明,该配合物可能通过p53-Bak途径诱导DNA损伤,进而导致MCF-7细胞发生凋亡。  相似文献   

8.
The association between consumption of genistein-containing soybean products and lower risk of breast cancer suggests a cancer chemopreventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively. After 6 days of incubation with 50 microM genistein, MCF-7 but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells. In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7 but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was studied next. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner, whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18-24 h but then increased considerably after 48 h. Hence, the Bax:Bcl-2 ratio initially increased but later decreased. These data suggest that at the genistein concentration tested, MCF-7 cells in contrast to MDA-MB-231 cells were sensitive to the induction of apoptosis by genistein, but Bax and Bcl-2 did not play clear roles.  相似文献   

9.
曲古抑菌素A (trichostatin A, TSA) 作为组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor, HDACi),是近年来发现的一类新型抗肿瘤药物,对多种实体瘤及血液系统肿瘤具有显著抗肿瘤作用.体外实验及动物模型显示,TSA对于乳腺癌也有一定杀伤作用.目前认为,TSA可以通过抑制组蛋白去乙酰化作用而影响细胞内基因转录,但其抗肿瘤作用的分子机理尚不清楚.本文通过MTT法检测不同剂量的TSA对乳腺癌细胞生长的影响,发现TSA可以剂量依赖地抑制乳腺癌细胞MCF-7的生长.膜联蛋白(annexin)-Ⅴ/PI双染法和PAPR水解检测证实TSA同时促进MCF-7细胞凋亡.Western 印迹分析表明,在分子水平上,TSA诱导MCF-7细胞中的周期抑制蛋白p21表达,同时使得抗凋亡因子Bcl-2的表达水平降低,表明TSA可能通过调控p21和Bcl-2的表达来实现抑制乳腺癌细胞生长并促使其凋亡,从而发挥抗肿瘤作用.  相似文献   

10.
Genes encoding growth-inhibitory proteins are postulated to be candidate tumor suppressors. The identification of such proteins may benefit the early diagnosis and therapy of tumors. Here we report the cloning and functional characterization of a novel human bone marrow stromal cell (BMSC)-derived growth inhibitor (BDGI) by large scale random sequencing of a human BMSC cDNA library. Human BDGI cDNA encodes a 477-amino acid residue protein that shares high homology with rat and mouse pregnancy-induced growth inhibitors. The C-terminal of BDGI is identical to a novel human pregnancy-induced growth inhibitor, OKL38. BDGI is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved family of BDGI-like proteins. BDGI overexpression inhibits the proliferation, decreases anchorage-dependent growth, and reduces migration of MCF-7 human breast cancer cells, whereas down-regulation of BDGI expression promotes the proliferation of MCF-7 and HeLa cervix epitheloid carcinoma cells. Interestingly, the inhibitory effect of BDGI on MCF-7 cells is more potent than that of OKL38. We demonstrate that BDGI induces cell cycle arrest in S phase and subsequent apoptosis of MCF-7 cells, which is likely to account for the antiproliferative effects of BDGI. This process may involve up-regulation of p27Kip1 and down-regulation of cyclin A, Bcl-2, and Bcl-xL. The inhibitory effect of BDGI on cell proliferation and the induction of apoptosis were also observed in A549 lung cancer cells but not HeLa cells. These results indicate that BDGI might be a growth inhibitor for human tumor cells, especially breast cancer cells, possibly contributing to the development of new therapeutic strategies for breast cancer.  相似文献   

11.
p21, a potent cyclin-dependent kinase inhibitor, has been known to induce cell cycle arrest in response to DNA-damaging agents. Although p21 has been reported to play an important role in the regulation of apoptosis, the postulated role for p21 in apoptosis is still controversial. Previously, we reported that p21 was induced in a p53-independent manner during ceramide-induced apoptosis in human hepatocarcinoma cell lines. In the present study, we investigated the precise role of p21 in ceramide-induced apoptosis in human hepatocarcinoma cells by using a tetracycline-inducible expression system. Overexpression of p21 by itself did not induce apoptosis in p53-deficient Hep3B cells. However, Hep3B/p21 cells were more sensitive to ceramide-induced apoptosis. In these cells, p21 overexpression did not result in G1 arrest. The expression level of Bax was increased in Hep3B/p21 cells treated with ceramide and its expression was more accelerated under the p21-overexpressed condition compared to that of the p21-repressed condition. Overexpression of Bax induced apoptosis in Hep3B cells. On the other hand, the levels of p21 and Bax protein were increased by ceramide in another hepatocarcinoma cell line, SK-Hep-1, while the Bcl-2 protein level was not changed. Overexpression of Bcl-2 not only suppressed apoptosis but also completely prevented induction of p21 and Bax caused by ceramide in SK-Hep-1 cells. Furthermore, overexpression of p21 antagonized the death-protective function of Bcl-2 and upregulated expression of Bax protein. These results suggest that p21 promotes ceramide-induced apoptosis by enhancing the expression of Bax, thereby modulating the molecular ratio of Bcl-2:Bax in human hepatocarcinoma cells.  相似文献   

12.
13.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

14.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

15.
ErbB2 overexpressing breast tumors have a poor prognosis and a high risk to develop chemoresistance to therapeutic treatment. "Chemoresistance" is a response of cells to toxic stress, and, although it is a common phenomenon, it is still poorly defined. However, a detailed understanding is required to target desensitized pathways and mechanisms for successful reactivation as part of a tailored therapy. To gain insight, which malfunctions contribute to chemoresistance, two mechanisms relevant for tissue homeostasis, the regulation of the cell cycle and of apoptosis, were investigated. Maternal MCF-7- and ErbB2-overexpressing MCF-7(erbB2) breast cancer cells were long term pretreated with 2'-deoxy-5-fluorodeoxyuridine (5-FdUrd) or 1-beta-d-arabinofuranosylcytosine (AraC) and the acquisition of drug-insensitivity was analyzed. A phosphate-conjugated heterodinucleoside consisting of one 5-FdUrd- and one AraC-moiety (5-fluoro-2'-desoxyuridylyl-(3'-->5')-Arabinocytidine) was utilized as a tool to assess the type of acquired resistances. ErbB2-overexpression disrupted proper cell cycle regulation and furthermore facilitated the development of an apoptosis-refractory phenotype upon exposure to 5-FdUrd. Experiments with dimer 5-FdUrd-araC in ErbB2-overexpressing MCF-7(erbB2) cells, and also with nucleoside 5-FdUrd in maternal MCF-7 cells, evidenced that the phenotypes of resistance to cell cycle inhibition and to apoptosis induction were differently affected. The expression profile of cyclin D1 (but not that of p53, p21, or p27) correlated with the proliferative phenotypes and nuclear accumulation of apoptosis inducing factor (but not activation of caspase 7) with apoptotic phenotypes. Dimer 5-FdUrd-araC overrode acquired chemoresistances, whereas combined application of 5-FdUrd and AraC exhibited significantly less activity. Dimer 5-FdUrd-araC remained active in MCF-7 clones most likely by circumventing the prerequisite of first-step phosphorylation. The acquisition of chemoresistance encompassed the affection of apoptosis- and cell-cycle regulation to, respectively, different extents. Thus, drug-induced cell cycle arrest and apoptosis induction are independent of each other.  相似文献   

16.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

17.
18.
19.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

20.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号