首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
缺氧诱导因子1与PI3K/Akt/mTOR信号转导通路   总被引:6,自引:0,他引:6  
孙胜  高钰琪  高文祥  范明 《生命科学》2005,17(4):311-314
缺氧诱导因子1(HIF-1)是参与缺氧调节的核心因子,可调控一系列缺氧诱导基因的表达,与机体许多生理和病理过程也密切相关。尽管一些研究显示缺氧和非缺氧性刺激可通过PI3K/Akt/mTOR信号途径诱导HIF-1的表达和活性,PI3K信号途径是否参与对HIF-1的调节仍然是个有争议的研究热点。明确HIF-1和PI3K的相互作用关系,能进一步为肿瘤等相关疾病的防治提供新的思路和方法。本文主要就HIF-1和PI3K/Akt/mTOR关系作一简要综述。  相似文献   

3.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

4.
5.
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression.  相似文献   

6.
Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α‐lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long‐term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α‐lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α‐lipoic acid, providing a promising way in the prevention and treatment of long‐term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.  相似文献   

8.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   

9.
10.
11.
L‐selectin and P‐selectin glycoprotein ligand‐1 (PSGL‐1) are adhesion molecules that play critical roles in neutrophil rolling during inflammation and lymphocyte homing. On the other hand they also function as signaling receptors to induce cytoskeleton changes. The present study is to investigate the signaling kinases responsible for the F‐actin changes mediated by L‐selectin and PSGL‐1 during neutrophil rolling on E‐selectin. Western blot analysis demonstrated that PI3K activation, peaking within 5 min, was induced by ligation of L‐selectin and PSGL‐1 with E‐selectin, and that Vav1 (the pivotal downstream effector of PI3K signaling pathway involved in cytoskeleton regulation) was recruited to the membrane and tyrosine‐phosphorylated, depending on PI3K. Furthermore, the F‐actin redistribution and assembly mediated by ligation with E‐selectin were blocked by LY294002, a PI3K specific inhibitor. Additional experiments showed that PI3K activity was involved in neutrophil rolling on E‐selectin. However, Syk/Zap70, the well‐known upstream kinase of PI3K, was not involved in this event. These data suggest that PI3K is required for the F‐actin‐based cytoskeleton changes during neutrophil rolling on E‐selectin, which may consequently regulate the rolling event. J. Cell. Biochem. 110: 910–919, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22‐like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

13.
14.
Akt is a crucial phosphoinositide 3-kinase (PI(3)K) effector that regulates cell proliferation and survival. PI(3)K-generated signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, direct Akt plasma membrane engagement. Pathological Akt plasma membrane association promotes oncogenesis. PtdIns(3,4)P2 is degraded by inositol polyphosphate 4-phosphatase-1 (4-ptase-1) forming PtdIns(3)P; however, the role of 4-ptase-1 in regulating the activation and function of Akt is unclear. In mouse embryonic fibroblasts lacking 4-ptase-1 (−/−MEFs), the Akt-pleckstrin homology (PH) domain was constitutively membrane-associated both in serum-starved and agonist-stimulated cells, in contrast to +/+MEFs, in which it was detected only at the plasma membrane following serum stimulation. Epidermal growth factor (EGF) stimulation resulted in increased Ser473 and Thr308-Akt phosphorylation and activation of Akt-dependent signalling in −/−MEFs, relative to +/+MEFs. Significantly, loss of 4-ptase-1 resulted in increased cell proliferation and decreased apoptosis. SV40-transformed −/−MEFs showed increased anchorage-independent cell growth and formed tumours in nude mice. This study provides the first evidence, to our knowledge, that 4-ptase-1 controls the activation of Akt and thereby cell proliferation, survival and tumorigenesis.  相似文献   

15.
16.
AZD9291, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is highly selective against EGFR T790M-mutant non–small cell lung cancer (NSCLC). On investigating the growth inhibitory effects of AZD9291 on NSCLC and the underlying mechanism, we found that AZD9291 can trigger autophagy-mediated cell death in both A549 and H1975 cells by increasing the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3) and decreasing the expression of p62. In the presence of the autophagy inhibitor chloroquine, the AZD9291-induced increase in LC3 level was further augmented. AZD9291 decreased the levels of phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), and phosphorylated Akt. AZD9291-induced cell death was enhanced by Akt knockdown, and the levels of both EGFR and phosphorylated EGFR were decreased by AZD9291. AZD9291 was also found to significantly suppress the tumor growth in H1975 xenograft nude mice. Thus, AZD9291 was found to induce autophagy, decrease in EGFR levels, and show a strong inhibitory effect on NSCLC both in vitro and in vivo. Furthermore, the PI3K/Akt signaling pathway was found to play a critical role in AZD9291-induced cell death.  相似文献   

17.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation.  相似文献   

19.
Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA‐induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA‐induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA‐induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time‐course gene expression profiles for all 39 Hox genes located in four different clusters—Hoxa, Hoxb, Hoxc, and Hoxd—were analyzed. Collinear expression of Hoxa and ‐b cluster genes was initiated earlier than that of the ‐c and ‐d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA‐induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号