首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
There is ample evidence for the involvement of protein phosphorylation on serine/threonine/tyrosine in bacterial signaling and regulation, but very few exact phosphorylation sites have been experimentally determined. Recently, gel‐free high accuracy MS studies reported over 150 phosphorylation sites in two bacterial model organisms Bacillus subtilis and Escherichia coli. Interestingly, the analysis of these phosphorylation sites revealed that most of them are not characteristic for eukaryotic‐type protein kinases, which explains the poor performance of eukaryotic data‐trained phosphorylation predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria‐specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors. Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site‐specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa‐specific predictors and we hope it will provide a useful asset to the microbiological community.  相似文献   

11.
Arbuscular mycorrhizal fungi form the most wide‐spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host‐dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host‐ and stage‐dependent manner to contribute to their extremely wide host range. We investigated the expression of SP‐encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA‐seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host‐dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis.  相似文献   

12.
13.
14.
15.
16.
In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post‐germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub‐nuclear accumulation of COP1. The MID protein is not degraded in a COP1‐dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1‐dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1‐dependent development with the regulation of endoreduplication.  相似文献   

17.
eIF4A is a highly conserved RNA‐stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4A‐1) is required for the coordination between cell cycle progression and cell size. A T‐DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4A‐1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1 eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development.  相似文献   

18.
High‐throughput sequencing methods for genotyping genome‐wide markers are being rapidly adopted for phylogenetics of nonmodel organisms in conservation and biodiversity studies. However, the reproducibility of SNP genotyping and degree of marker overlap or compatibility between datasets from different methodologies have not been tested in nonmodel systems. Using double‐digest restriction site‐associated DNA sequencing, we sequenced a common set of 22 specimens from the butterfly genus Speyeria on two different Illumina platforms, using two variations of library preparation. We then used a de novo approach to bioinformatic locus assembly and SNP discovery for subsequent phylogenetic analyses. We found a high rate of locus recovery despite differences in library preparation and sequencing platforms, as well as overall high levels of data compatibility after data processing and filtering. These results provide the first application of NGS methods for phylogenetic reconstruction in Speyeria and support the use and long‐term viability of SNP genotyping applications in nonmodel systems.  相似文献   

19.
20.
Bacteria employ twin‐arginine translocation (Tat) pathways for the transport of folded proteins to extracytoplasmic destinations. In recent years, most studies on bacterial Tat pathways addressed the membrane‐bound TatA(B)C subunits of the Tat translocase, and the specific interactions between this translocase and its substrate proteins. In contrast, relatively few studies investigated possible coactors in the TatA(B)C‐dependent protein translocation process. The present studies were aimed at identifying interaction partners of the Tat pathway of Bacillus subtilis, which is a paradigm for studies on protein secretion by Gram‐positive bacteria. Specifically, 36 interaction partners of the TatA and TatC subunits were identified by rigorous application of the yeast two‐hybrid (Y2H) approach. Our Y2H analyses revealed that the three TatA isoforms of B. subtilis can form homo‐ and heterodimers. Subsequently, the secretion of the Tat substrates YwbN and PhoD was tested in mutant strains lacking genes for the TatAC interaction partners identified in our genome‐wide Y2H screens. Our results show that the cell wall‐bound protease WprA is important for YwbN secretion, and that the HemAT and CsbC proteins are required for PhoD secretion under phosphate starvation conditions. Taken together, our findings imply that the Bacillus Tat pathway is embedded in an intricate protein–protein interaction network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号