首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isosorbide-2-carbamate-5-esters are highly potent and selective butyrylcholinesterase inhibitors with potential utility in the treatment of Alzheimer’s Disease (AD). They are stable in human plasma but in mouse plasma they undergo hydrolysis at the 5-ester group potentially attenuating in vivo potency. In this paper we explore the role of the 5-position in modulating potency. The focus of the study was to increase metabolic stability while preserving potency and selectivity. Dicarbamates and 5-keto derivatives were markedly less potent than the ester class. The 2-benzylcarbamate-5-benzyl ether was found to be potent (IC50 52 nM) and stable in the presence of mouse plasma and liver homogenate. The compound produces sustained moderate inhibition of mouse butyrylcholinesterase at 1 mg/kg, IP.  相似文献   

2.
A series of highly potent and selective pyrazolopyrimidine mTOR inhibitors which contain water-solubilizing groups attached to the 6-arylureidophenyl moiety have been prepared. Such derivatives displayed superior potency to those in which these appendages were attached to alternative sites. In comparison to unfunctionalized arylureido compounds, these analogs demonstrated enhanced cellular potency and significantly improved stability towards human microsomes, resulting in an mTOR inhibitor with impressive efficacy in a xenograft model with an intermittent dosing regimen.  相似文献   

3.
Natural and synthetic benzotropolone compounds were assessed in vitro for their ability to inhibit hydroxyestradiol methylation by catechol-O-methyltransferase (COMT). The compounds were also modeled in silico with a homology model of human COMT. Purpurogallin (1), purpurogallin carboxylic acid (2), and theaflavin-3,3'-digallate (6) were the most potent inhibitors of 2-hydroxy and 4-hydroxyestradiol methylation (IC(50) 0.22-0.50microM). Compounds 1 and 6 decreased the V(max) and increased the K(m) of COMT, indicating a mixed-type inhibition. Compounds 1 and 2 bound to COMT by inserting the six-membered ring of the benzotropolone into the active site. Decreased acidity of the hydroxyl groups on this ring or increased bulkiness reduced potency. Compound 6 bound by inserting the galloyl ester into the active site, which allowed the compound to overcome increased bulkiness and resulted in restored potency. Further studies are needed to determine the impact in vivo of COMT inhibition by these compounds.  相似文献   

4.
We report analogue-based rational design and synthesis of two novel series of polycyclic heteroarenes, pyrrolo[3,2-b]quinolines and pyrido[2,3-b]indoles, tethered to a biaryl system by a methyl-, ethyl- or propyl ether as PDE10A inhibitors. A number of analogues were prepared with variable chain length and evaluated for their ability to block PDE10A enzyme using a radiometric assay. Detailed SAR analyses revealed that compounds with an ethyl ether linker are superior in potency compared to compounds with methyl or propyl ether linkers. These compounds, in general, showed poor metabolic stability in rat and human liver microsomes. The metabolic profile of one of the potent compounds was studied in detail to identify metabolic liabilities of these compounds. Structural modifications were carried out that resulted in improved metabolic stability without significant loss of potency.  相似文献   

5.
Substructural class effects surrounding replacement of a ‘cis’ N-methyl aniline amide within potent and selective thienobenzoxepin PI3-kinase inhibitors are disclosed. While a simple aryl to alkyl switch was not tolerated due to differences in preferred amide conformation, heterocyclic amide isosteres with maintained aryl substitution improved potency and metabolic stability at the cost of physical properties. These gains in potency allowed lipophilic deconstruction of the arene to simple branched alkyl substituents. As such, overall lipophilicity-neutral, MW decreases were realized relative to the aniline amide series. The improved properties for lead compound 21 resulted in high permeability, solubility and bioavailability.  相似文献   

6.
A series of potent 5-lipoxygenase-activating protein (FLAP) inhibitors are herein described. SAR studies focused on the discovery of novel alicyclic moieties appended to an indole core to optimize potency, physical properties and off-target activities. Subsequent SAR on the N-benzyl substituent of the indole led to the discovery of compound 39 (AM679) which showed potent inhibition of leukotrienes in human blood and in a rodent bronchoalvelolar lavage (BAL) challenge model.  相似文献   

7.
Inhibition of soluble epoxide hydrolase (sEH) has been proposed as a new pharmaceutical approach for treating hypertension and vascular inflammation. The most potent sEH inhibitors reported in literature to date are urea derivatives. However, these compounds have limited pharmacokinetic profiles. We investigated non-urea amide derivatives as sEH inhibitors and identified a potent human sEH inhibitor 14-34 having potency comparable to urea-based inhibitors.  相似文献   

8.
A series of substituted 4,5,6,7-tetrahydrothieno[3,2-c]pyridines (THTPs) was synthesized and evaluated for their human phenylethanolamine N-methyltransferase (hPNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. The THTP nucleus was suggested as an isosteric replacement for the 1,2,3,4-tetrahydroisoquinoline (THIQ) ring system on the basis that 3-thienylmethylamine (18) was more potent as an inhibitor of hPNMT and more selective toward the alpha(2)-adrenoceptor than benzylamine (15). Although the isosterism was confirmed, with similar influence of functional groups and chirality in both systems on hPNMT inhibitory potency and selectivity, the THTP compounds proved, in general, to be less potent as inhibitors of hPNMT than their THIQ counterparts, with the drop in potency being primarily attributed to the electronic properties of the thiophene ring. A hypothesis for the reduced hPNMT inhibitory potency of these compounds has been formed on the basis of molecular modeling and docking studies using the X-ray crystal structures of hPNMT co-crystallized with THIQ-type inhibitors and S-adenosyl-L-homocysteine as a template.  相似文献   

9.
Adamantyl groups are widely used in medicinal chemistry. However, metabolism limits their usage. Herein, we report the first systematic study of adamantyl ureas and diureas bearing substituents in bridgehead positions of adamantane and/or spacers between urea groups and adamantane group, and tested their effects on soluble epoxide hydrolase inhibitor potency and metabolic stability. Interestingly, the effect on activity against human and murine sEH varied in opposite ways with each new methyl group introduced into the molecule. Compounds with three methyl substituents in adamantane were very poor inhibitors of murine sEH while still very potent against human sEH. In addition, diureas with terminal groups bigger than sEH catalytic tunnel diameter were still good inhibitors suggesting that the active site of sEH opens to capture the substrate or inhibitor molecule. The introduction of one methyl group leads to 4-fold increase in potency without noticeable loss of metabolic stability compared to the unsubstituted adamantane. However, introduction of two or three methyl groups leads to 8-fold and 98-fold decrease in stability in human liver microsomes for the corresponding compounds.  相似文献   

10.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with alpha-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-gamma-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-gamma-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.  相似文献   

11.
The structure-based design, synthesis, and biological evaluation of two novel series of potent and selective MEK kinase inhibitors are described herein. The elaboration of a lead pyrrole derivative to a bicyclic dihydroindolone core provided compounds with high potency and good drug-like pharmaceutical properties. Further scaffold modification afforded a series of dihydroindolizinone inhibitors, including an orally available advanced preclinical MEK inhibitor with potent in vivo antitumor efficacy.  相似文献   

12.
3,5-diaryl-4,5-dihydropyrazoles were discovered to be potent KSP inhibitors with excellent in vivo potency. These enzyme inhibitors possess desirable physical properties that can be readily modified by incorporation of a weakly basic amine. Careful adjustment of amine basicity was essential for preserving cellular potency in a multidrug resistant cell line while maintaining good aqueous solubility.  相似文献   

13.
We have identified a new series of C-5 substituted indazolylaminoquinazolines as potent erbB2 kinase inhibitors. The lead compound 22 showed excellent in vitro potency, good physical properties, acceptable oral pharmacokinetics in rat and dog, and low human in vitro clearance. It showed at least equivalent activity dose for dose compared to lapatinib in various erbB2- or EGFR-driven xenograft models after chronic oral administration.  相似文献   

14.
Indole-5-carboxylic acids with 3-aryloxy-2-oxopropyl residues in position 1 were previously reported to be potent inhibitors of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) isolated from human platelets. In continuation of our attempts to develop novel cPLA(2)alpha inhibitors, a series of structurally related indole-2-carboxylic acids containing 3-aryloxy-2-oxopropoxy residues in position 5 were synthesized and tested for their cPLA(2)alpha-inhibitory potency. Furthermore, the thermodynamic solubility of these compounds and their metabolic stability against rat liver microsomes were evaluated.  相似文献   

15.
Cholesteryl ester transfer protein (CETP) has been identified as a novel target for increasing HDL cholesterol levels. In this report, we describe the biochemical characterization of anacetrapib, a potent inhibitor of CETP. To better understand the mechanism by which anacetrapib inhibits CETP activity, its biochemical properties were compared with CETP inhibitors from distinct structural classes, including torcetrapib and dalcetrapib. Anacetrapib and torcetrapib inhibited CETP-mediated cholesteryl ester and triglyceride transfer with similar potencies, whereas dalcetrapib was a significantly less potent inhibitor. Inhibition of CETP by both anacetrapib and torcetrapib was not time dependent, whereas the potency of dalcetrapib significantly increased with extended preincubation. Anacetrapib, torcetrapib, and dalcetrapib compete with one another for binding CETP; however anacetrapib binds reversibly and dalcetrapib covalently to CETP. In addition, dalcetrapib was found to covalently label both human and mouse plasma proteins. Each CETP inhibitor induced tight binding of CETP to HDL, indicating that these inhibitors promote the formation of a complex between CETP and HDL, resulting in inhibition of CETP activity.  相似文献   

16.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

17.
A series of sulfhydryl and novel sulfur-based substrate-analog inhibitors has been synthesized and tested against human fibroblast and neutrophil collagenases. Absolute stereospecific synthesis of several sulfhydryl inhibitors establishes that it is the diastereomers with the R-configuration of the P'1 residues, which correspond to the unnatural D-amino acid analogs, that are the most potent inhibitors. The corresponding disulfide, sulfonate, sulfinate, sulfide, sulfoxide and sulfone analogs exhibit widely variable levels of potency, but all less than the sulfhydryl compounds. No correlation between inhibitor potency and any single structural feature of these new compounds is apparent. However, differences in potency can be ascribed to the different affinities of these functional groups for zinc coordination and hydrogen bonding to nearby active site residues.  相似文献   

18.
A series of substituted guanidine derivatives were prepared and evaluated as potent and selective inhibitors of mitochondrial F(1)F(0) ATP hydrolase. The initial thiourethane derived lead molecules possessed intriguing in vitro pharmacological profiles, though contained moieties considered non-drug-like. Analogue synthesis efforts led to compounds with maintained potency and superior physical properties. Small molecules in this series which potently and selectivity inhibit ATP hydrolase and not ATP synthase may have utility as cardioprotective agents.  相似文献   

19.
The synthesis, inhibitory activity and mode of action of oxazolidine-2,4-diones against porcine pancreatic elastase, here used as a model for human neutrophil elastase, are reported. The nature of N-substitution at the oxazolidine-2,4-dione scaffold has large effect on the inhibitory potency against elastase. N-Acyl and N-sulfonyloxazolidine-2,4-diones emerged as potent pseudo-irreversible inhibitors, displaying high second-order rate constants for PPE inactivation. The title compounds were also shown to be potent inhibitors of human neutrophil elastase (HNE) and proteinase-3, and weak inhibitors of human cathepsin G. The results herein presented show that the oxazolidine-2,4-diones represent a new promising class of serine protease inhibitors.  相似文献   

20.
Fused dihydroindazolopyrrolocarbazole oximes have been identified as low nanomolar, potent dual TIE-2 and VEGF-R2 receptor tyrosine kinase inhibitors with excellent cellular potency. Development of the structure-activity relationships (SAR) led to identification of compounds 35 and 40 as potent, selective dual TIE-2/VEGF-R2 inhibitors with favorable pharmacokinetic properties. Compound 35 was orally active in tumor models with no observed toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号