首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The 5.5 protein (T7p32) of coliphage T7 (5.5T7) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5T7 protein is insoluble when expressed in Escherichia coli, but we find that 5.5T7 can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5T7 binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5T7 can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5T7 protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5T7 protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression.  相似文献   

2.
The small heat shock proteins (smHSPs) belong to a family of proteins that function as molecular chaperones by preventing protein aggregation and are also known to contain a conserved region termed alpha-crystallin domain. Here, we report the expression, purification, and partial characterization of a novel smHSP (HSP17.9) from the phytopathogen Xylella fastidiosa, causal agent of the citrus variegated chlorosis (CVC). The gene was cloned into a pET32-Xa/LIC vector to over-express the protein coupled with fusion tags in Escherichia coli BL21(DE3). The expressed HSP17.9 was purified by immobilized metal affinity chromatography (IMAC) and had its identity determined by mass spectrometry (MALDI-TOF). The correct folding of the purified recombinant protein was verified by circular dichroism spectroscopy. Finally, the HSP17.9 protein also proved to efficiently prevent induced aggregation of insulin, strongly indicating a chaperone-like activity.  相似文献   

3.
4.
5.
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.  相似文献   

6.
The interaction between nucleic acids and Escherichia coli H-NS, an abundant 15 kDa histone-like protein, has been studied by affinity chromatography, nitrocellulose filtration and fluorescence spectroscopy. Intrinsic fluorescence studies showed that the single Trp residue of H-NS (position 108) has a restricted mobility and is located within an hydrophobic region inaccessible to both anionic and cationic quenchers. Binding of H-NS to nucleic acids, however, results in a change of the microenvironment of the Trp residue and fluorescence quenching; from the titration curves obtained with addition of increasing amounts of poly(dA)-poly(dT) and poly(dC)-poly(dG) it can be estimated that an H-NS dimer in 1.5 x SSC binds DNA with an apparent Ka approximately equal to 1.1 x 10(4) M-1.bp-1. H-NS binds to double-stranded DNA with a higher affinity than the more abundant histone-like protein NS(HU) and, unlike NS, prefers double-stranded to single-stranded DNA and DNA to RNA; both monovalent and divalent cations are required for optimal binding.  相似文献   

7.
8.
The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR spectroscopies. It was shown from gel retardation assay that DNA binding affinity of the mutant proteins relative to that of native H-NS falls in the range from 1/6 to 1/25 for H-NS(60-137), H-NS(70-137) and H-NS(80-137), whereas it was much weaker for H-NS(91-137). Thus, the DNA binding domain was defined to be the region from residue A80 to the C-terminus. Sequential nuclear Overhauser effect (NOE) connectivities and those of medium ranges revealed that the region of residues Q60-R93 in mutant protein H-NS(60-137) forms a long stretch of disordered, flexible chain, and also showed that the structure of the C-terminal region (residues A95-Q137) in mutant H-NS(60-137) was nearly identical to that of H-NS(91-137). 1H and 15N chemical shift perturbations induced by complex formation of H-NS(60-137) with an oligonucleotide duplex 14-mer demonstrated that two loop regions, i.e. residues A80-K96 and T110-A117, play an essential role in DNA binding.  相似文献   

9.
10.
The Escherichia coli H-NS protein is a major nucleoid-associated protein that is involved in chromosomal DNA packaging and gene regulatory functions. These biological processes are intimately related to the DNA supercoiling state and thus suggest a direct relationship between H-NS binding and DNA supercoiling. Here, we show that H-NS, which has two distinct DNA-binding modes, is able to differentially regulate DNA supercoiling. H-NS DNA-stiffening mode caused by nucleoprotein filament formation is able to suppress DNA plectoneme formation during DNA supercoiling. In contrast, when H-NS is in its DNA-bridging mode, it is able to promote DNA plectoneme formation during DNA supercoiling. In addition, the DNA-bridging mode is able to block twists diffusion thus trapping DNA in supercoiled domains. Overall, this work reveals the mechanical interplay between H-NS and DNA supercoiling which provides insights to H-NS organization of chromosomal DNA based on its two distinct DNA architectural properties.  相似文献   

11.
12.
13.
14.
15.
16.
为了探讨副溶血性弧菌拟核相关蛋白H-NS对Ⅲ型分泌系统(T3SS) VP1687-1686基因位点的转录调控,本研究提取副溶血弧菌hns突变株(Δhns)和野生株(WT)的总RNA,采用引物延伸实验研究靶基因的转录起始位点,并根据产物的丰度判断H-NS对靶基因的调控关系;采用实时定量RT-PCR研究靶基因mRNA在WT和Δhns中转录丰度,以判定H-NS对靶基因的转录调控关系;将靶基因启动子区域DNA序列克隆至lacZ基因上游,将重组质粒转入WT和Δhns中,得到相应的LacZ菌株,通过LacZ报告基因融合实验研究H-NS对靶基因的调控关系;用PCR扩增靶基因的启动子区DNA序列,并纯化His-H-NS蛋白,通过凝胶阻滞实验(EMSA)研究His-H-NS是否对靶基因启动子区具有直接的结合作用。研究结果显示,T3SS的VP1687-1686只含有一个转录起始位点,位于翻译起始位点上游82 bp处,且H-NS能够抑制其转录活性,但不能直接结合到VP1687-1686区的启动子区。另外,H-NS对calR的转录无调控作用,His-H-NS也不能结合到其启动子区。本研究的结果初步说明,H-NS能够间接抑制VP1687-1686的转录,该抑制机制与CalR无关联。  相似文献   

17.
The nucleoid-associated protein H-NS and its paralogue StpA are global regulators of gene expression and form an integral part of the protein scaffold responsible for DNA condensation in Escherichia coli and Salmonella typhimurium . Although protein oligomerization is a requirement for this function, it is not entirely understood how this is accomplished. We address this by reporting on the self-association of H-NS and its hetero-association with StpA. We identify residues 1–77 of H-NS as being necessary and sufficient for high-order association. A multi-technique-based approach was used to measure the effects of salt concentration on the size distribution of H-NS and the thermal stability of H-NS and StpA dimers. The thermal stability of the StpA homodimer is significantly greater than that of H-NS1−74. Investigation of the hetero-association of H-NS and StpA proteins suggested that the association of H-NS with StpA is more stable than the self-association of either H-NS or StpA with themselves. This provides a clear understanding of the method of oligomerization of these important proteins in effecting DNA condensation and reveals that the different associative properties of H-NS and StpA allow them to perform distinct, yet complementary roles in the bacterial nucleoid.  相似文献   

18.
19.
20.
The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein–DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein–DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号