首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Background. Helicobacter pylori adhering to the human gastric epithelium causes gastric diseases such as ulcer, carcinoma and lymphoma. It is thus important to observe in detail both the surface of the epithelial cells and the H. pylori that adhered to it for the elucidation of H. pylori‐induced diseases by scanning electron microscopy (SEM). Since the thick mucus layer blocks the observation of the cell surface and the bacteria, it is generally eliminated during the processing for SEM by roughly mechanical methods, but these treatments also demolish the ultrastructure of the cells. We studied the nonmechanical method for removal of mucus layer of gastric epithelium using pronase. Materials and Methods. To determine the optimal concentration of pronase, mucin was used as a substrate for inhibition of the viscosity. Pronase was added in 2% mucin at the concentration of 10, 50, 100, 500, 1000, 2000 or 5000 unit/ml and the flowing time of the mixture was measured. Based on the digestion experiment, biopsied specimens from 24 patients with dyspepsic symptoms were fixed in glutaraldehyde and then washed in rolling with different concentration of pronase. After the pretreatment by pronase, the specimens were treated according to the standard process for SEM. Results. We succeeded in removing the mucus layer on the surface of epithelial cells from the biopsied specimens fixed in glutaraldehyde by rinsing with 2000 unit/ml pronase for 24 hours. Conclusions. Using our digestive method without destroying the ultrastructure, the earliest stage which H. pylori has adhered onto the human gastric epithelium can be observed for the investigation of H. pylori‐induced gastric disorders by SEM.  相似文献   

2.
Summary SEM reveals that the inner surface of the pituitary cleft is lined by a continuous layer of marginal cells possessing microvillous and ciliated apical surfaces. The ciliated cells are more numerous on the posterior side (toward the pars intermedia) than on the anterior side of the cleft (toward the pars distalis). In contrast small infoldings (crypts) were occasionally noted only on the marginal layer covering the distal part of the hypophysis. In some areas of the cleft the surface features of the marginal cells are rather similar to the epithelial cells populating the upper parts of the respiratory tract in their topography and distribution. In other regions they also show striking similarities with the ependymal cells (tanycytes) lining the lateral recesses of the 3rd ventricle and the infundibular process with which the pituitary cleft has a very close topographical relationship.The parenchymal cells of the pars distalis are closely related to the flattened marginal cells of the cleft. The intercellular spaces of the pars distalis form a three-dimensional labyrinthic series of cavities continuous with the submarginal spaces of the cleft. Further SEM and TEM results demonstrate that the majority of the microvillous marginal cells lining both sides of the cleft possess surface features such as bulbous protrusions, laminar evaginations and large cytoplasmatic vacuoles, which are very likely the expression of an active transport of fluids.On the basis of these results it is concluded that the fluid-like material (colloid) present in the pituitary cleft is mainly derived from the fluids contained in the lacunar spaces of the pars distalis. Thus, marginal cells by absorbing fluids from the cleft by active endocytosis, may transport to the pars intermedia material (or hormones) produced in the distal part of the gland and vice versa.The cilia present on many marginal cells, based on their 9+2 tubular pattern, possess a kynetic role. This is very similar to that shown by the ciliated cells of the ependyma lining the brain ventricles. The occurrence of ciliated cells within the pituitary parenchyma (mainly in the follicles) suggests that they probably arise from the ciliated cells populating the marginal layer of the cleft and with which the parenchyma cells are closely related.  相似文献   

3.
SYNOPSIS. Oocysts of Eimeria nieschulzi from the laboratory rat, Rattus, norvegicus , were studied by scanning and transmission electron microscopy. Oocysts had a rough outer wall with apparent random depressions. The oocyst wall is composed of 2 layers: an osmiophilic outer layer consisting of a rough external and smooth internal surface, and a relatively thick, electron-lucent inner layer. The outer layer is composed of a dense, coarsely granular matrix. The inner layer consists of homogeneous fine granular material interspersed with coarse osmiophilic granules and contains one closely applied membrane on the outermost surface. Several raised lenticular areas are seen on the coarse outer surface of the inner layer. These layers are 102 (75–128) and 176 (135–204) nm thick, respectively.
The sporocyst wall is thin, consisting of 3 to 4 unit membranes, and measures 27 (18–34) nm thick.  相似文献   

4.
Summary We have studied the layers of the muscular coat of the guinea-pig small intestine after enzymatic and chemical removal of extracellular connective tissue. The cells of the longitudinal muscle layer are wider, have rougher surfaces, more finger-like processes and more complex terminations, but fewer intercellular junctions than cells in the circular muscle layer. A special layer of wide, flat cells with a dense innervation exists at the inner margin of the circular muscle layer, facing the submucosa. The ganglia of the myenteric and submucosal plexuses are covered by a smooth basal lamina, a delicate feltwork of collagen fibrils, and innumerable connective tissue cells. The neuronal and glial cell processes at the surface of ganglia form an interlocking mosaic, which is loosely packed in newborn and young animals, but becomes tightly packed in adults. The arrangement of glial cells becomes progressively looser along finer nerve bundles. Single varicose nerve fibres are rarely exposed, but multiaxonal bundles are common. Fibroblast-like cells of characteristic shape and orientation are found in the serosa; around nerve ganglia; in the intermuscular connective tissue layer and in the circular muscle, where they bridge nerve bundles and muscle cells; at the submucosal face of the special, flattened inner circular muscle layer; and in the submucosa. Some of these fibroblast like cells correspond to interstitial cells of Cajal. Other structures readily visualized by scanning electron microscopy are blood and lymphatic vessels and their periendothelial cells. The relationship of cellular elements to connective tissue was studied with three different preparative procedures: (1) freeze-cracked specimens of intact, undigested intestine; (2) stretch preparations of longitudinal muscle with adhering myenteric plexus; (3) sheets of submucosal collagen bundles from which all cellular elements had been removed by prolonged detergent extraction.  相似文献   

5.
Formation of the first epidermal layers in the embryonic scales of the lizard Lampropholis guichenoti was studied by optical and electron microscopy. Morphogenesis of embryonic scales is similar to the general process in lizards, with well‐developed overlapping scales being differentiated before hatching. The narrow outer peridermis is torn and partially lost during scale morphogenesis. A second layer, probably homologous to the inner peridermis of other lizard species, but specialized to produce lipid‐like material, develops beneath the outer peridermis. Two or three lipogenic layers of this type develop in the forming outer surface of scales near to the hinge region. These layers form a structure here termed “sebaceous‐like secretory cells.” These cells secrete lipid‐like material into the interscale space so that the whole epidermis is eventually coated with it. This lipid‐like material may help to reduce friction and to reduce accumulation of dirt between adjacent extremely overlapping scales. At the end of their differentiation, the modified inner periderm turns into extremely thin cornified cells. The layer beneath the inner peridermis is granulated due to the accumulation of keratohyalin‐like granules, and forms a shedding complex with the oberhautchen, which develops beneath. Typically tilted spinulae of the oberhautchen are formed by the aggregation of tonofilaments into characteristically pointed cytoplasmic outgrowths. Initially, there is little accumulation of β‐keratin packets in these cells. During differentiation, the oberhautchen layer merges with cells of the β‐keratin layer produced underneath, so that a typical syncytial β‐keratin layer is eventually formed before hatching. Between one‐fourth distal and the scale tip, the dermis under epidermal cells is scarce or absent so that the mature scale tip is made of a solid rod of β‐keratinized cells. At the time of hatching, differentiation of a mesos layer is well advanced, and the epidermal histology of scales corresponds to Stage 5 of an adult shedding cycle. The present study confirms that the embryonic sequence of epidermal stratification observed in other species is basically maintained in L. guichenoti. J. Morphol. 241:139–152, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
The structure of precursors to fungiform papillae without taste buds, prior to the arrival of sensory nerve fibers at the papillae, was examined in the fetal rat on embryonic day 13 (E13) and 16 (E16) by light and transmission electron microscopy in an attempt to clarify the mechanism of morphogenesis of these papillae. At E13, a row of rudiments of fungiform papillae was arranged along both sides of the median sulcus of the lingual dorsal surface, and each row consisted of about 10 rudiments. There was no apparent direct contact between papillae rudiments and sensory nerves at this time. Bilaterally towards the lateral side of the tongue, adjacent to these first rudiments of fungiform papillae, a series of cord-like invaginations of the dorsal epithelium of the tongue into the underlying connective tissue, representing additional papillary primordia parallel to the first row, was observed. The basal end of each invagination was enlarged as a round bulge, indented at its tip by a mound of fibroblasts protruding into the bulge. At E16 there was still no apparent direct contact between rudiments of fungiform papillae and sensory nerves. Each rudiment apically contained a spherical core of aggregating cells, which consisted of a dense assembly of large, oval cells unlike those in other areas of the lingual dorsal epithelium. The differentiation of these aggregated cells was unclear. The basal lamina was clearly recognizable between the epithelium of the rudiment of fungiform papillae and the underlying connective tissue. Spherical structures, which appeared to be sections of the cord-like invaginations of the lingual epithelium that appeared on E13, were observed within the connective tissue separated from the dorsal lingual epithelium. Transverse sections of such structures revealed four concentric layers of cells: a central core, an inner shell, an outer shell, and a layer of large cells. Bundles of fibers were arranged in the central core, and the diameters of bundles varied somewhat depending on the depth of the primordia within the connective tissue and their distance from the median sulcus. Ultrastructural features of cells in the outer shell differed significantly in rudiments close to the lingual epithelium as compared to those in deeper areas of connective tissue. Around the outer shell there was a large-cell layer consisting of one to three layers of radially elongated, oval cells that contained many variously sized, electron-dense, round granules. Large numbers of fibroblasts formed dense aggregates around each spherical rudiment, and were separated by the basal lamina from the large-cell epithelial layer. Progressing from deep-lying levels of the rudiments of the papillae to levels close to the lingual surface epithelium, the central core, inner shell, and outer shell gradually disappeared from the invaginated papillary cords.  相似文献   

7.
The morphological features of boar seminal vesicles were examined by light and transmission microscopy. Boar seminal vesicles consist of glandular tissue arranged in multiple lobules containing a system of ramified secretory tubules. The secretory tubules are composed of a mucosa formed by an epithelium and an underlying lamina propria and, are surrounded by a muscular layer. The epithelium is made up of columnar cells and occasional basal cells. Mast cells are frequently found among epithelial cells. Three types of columnar cells, considered different stages of the secretory cell cycle, are present: principal cells, clear cells and dense cells. Principal cells are functionally differentiated cells characterised by abundant mitochondria, great development of the rough endoplasmic reticulum and presence of secretory granules in their cytoplasm. The apical surface of many principal cells shows apical blebs filled with PAS-positive material. No acid mucosubstances are detected. Microvilli cover the apical surface except in the apical blebs. Dense cells, arranged between principal cells, are also functional differentiated cells but with signs of cellular degeneration. Clear cells are an initial differentiated stage of columnar cells and are characterised by the presence of a poorly developed rough endoplasmic reticulum and by the absence of secretory granules. Proliferating cells are present among columnar cells. Basal cells contain scarce cytoplasm, few organelles and no secretory granules. The lack of mitotic activity in these cells suggests that they do not act as precursors of columnar cells.  相似文献   

8.
Innervation of the arteriovenous anastomoses in the dog tongue   总被引:1,自引:0,他引:1  
Summary Profiles of nerve plexuses in the arteriovenous anastomoses of the dog tongue were investigated by both transmission and scanning electron microscopy. Three-dimensional morphology of the vascular nerves was examined after removal of the connective tissue components by the HCl-hydrolysis method. Tight bending and a rich nerve supply were the most characteristic features of the anastomosing channels. The tunica media consisted of an outer circular layer of typical smooth-muscle cells and an inner region containing longitudinal plicae of ramified smoothmuscle cells. The tunica adventitia was exclusively occupied by nerve bundles; fibroblasts were poorly developed. Numerous nerve bundles of variable size were coiled around the anastomosing channels, and occasional bundles ran crosswise over the U-shaped bent vessels.  相似文献   

9.
El‐Bakry, A.M. 2011. Comparative study of the corneal epithelium in some reptiles inhabiting different environments. —Acta Zoologica (Stockholm) 92 : 54–61. The vertebrate cornea functions in either aquatic or aerial environments and in some cases in both. In terrestrial and aerial vertebrates, the cornea contributes most of the refractive powers of the eye because of the large variation in refractive index between the air and the cornea. The present study aimed to examine and compare the main features of the corneal epithelial surface of three reptilian species related to three different families (Caretta caretta, Varanus griseus and Mabuya quinquetaeniata) and inhabiting different environment, by light, scanning (SEM) and transmission electron microscopy. The mean epithelial cell densities of the species of the study were 8.670 ± 3.134, 5.945 ± 2.144 and 2.124 ± 713 respectively. The corneal epithelium of the three species observed by SEM showed a similarity to one another indicating that the apical cell surfaces possess regular polygonal cells with varieties of microprocesses. These microprocesses were represented by microplicae, numerous microvilli and some long microridges in C. caretta, microplicae and minute microholes in V. griseus and microplicae intermingled with short microvilli in M. quinquetaeniata. According to the densities of these microprocesses, three polymorphic cell types (light, medium and dark) appeared in C. caretta, light and medium cell types were observed in V. griseus and medium and dark cell types were noticed in M. quinquetaeniata. Different types of tight adhesions were observed by transmission electron microscopy between the cell borders of the epithelial cells which differ according to environment where the species occupy. In conclusion, variation in the structure of the corneal epithelial cells appears to be related to the living environment, such as aerial, terrestrial and aquatic ones, which is occupied by every species.  相似文献   

10.
PANIGRAHI, S. G., 1986. Seed morphology of Rotala L., Ammannia L., Nesaea Kunth and Hionanthera Fernandes & Diniz (Lythraceae) . Seed-surface characteristics of Ammonia lalifolia L., Rotala verticillaris L., Nesaea triflora Comm. ex Kunth and Hionanthera garciae Fernandes & Dinz were studied using the SEM. Seeds from herbarium specimens moistened in water produce cracks along the intercellular walls and distinctive types of invaginating 'hairs'. These 'hairs' are mucilaginous in nature and diagnostic at the species level. They are released in profusion from the upper convex surface of the testa. Viable seeds of Ammonia baccifera L., similarly treated, exude, in addition to the 'hairs', mucilaginous globules from the lower concave surface during germination. The invaginating 'hairs' arise diagonally from the roof of the epidermal cells of the testa and protrude to the lumen of the epidermal cells. A sac of mucilage is observed swelling out on the inner flat surface of the developing seeds. The biological functions of these 'hairs' and mucilage globules in germinating seeds in relation to seed dispersal and regulation of germination in appropriate habitats is discussed.  相似文献   

11.
The esophagus of the turtle, like the mucosal surfaces in other species, contains variously sized areas of lymphoid infiltration. The tunica propria and the surface epithelial layer of this area are invaded by the lymphoid cells. The features of the layer of epithelial cells which cover the lymphoid infiltrations are of a special kind: they do not possess vibratile cilia and are able to take up materials flowing into the lumen. The present paper contains further information concerning lymphoid infiltration obtained by histological and histochemical methods. The epithelial layer covering the lymphoid infiltrations is composed of cells with irregularly distributed microvilli, ciliated cells and mucous-secreting cells. After administration of silica and colloidal carbon, the microvillar epithelial cells proved to have these substances inside them, thereby accounting for the pinocytotic activity. The absorbing epithelial cells were not damaged by silica which is a macrophage-toxic agent, while the underlying macrophages are damaged. These results are compared with the features of lymphoid infiltration associated cells in various organs and animals; the hypothesis is proposed that these cells in the esophagus of turtles may originate from the covering epithelial cells.  相似文献   

12.
The spermatheca and the accessory glands of the collembolan Orchesella villosa are described for the first time. Both organs exhibit ultrastructural differences, according to the time of the intermolt in which the specimens were observed. A thick cuticular layer lines the epithelial cells of the accessory glands. In the reproductive phase, they are involved in secretory activity; a moderately dense secretion found in the apical cell region opens into the gland lumen. Cells with an extracellular cistern are intermingled with the secretory cells. These cells could be involved in fluid secretion, with the secretory product opening into the cistern which is filled with an electron-transparent material. After the reproductive phase, the gland lumen becomes filled with a dense secretion. The accessory gland secretion may play a protective role towards the eggs. The spermatheca is located between the accessory glands; its epithelium is lined by a thin cuticle forming spine-like projections into the lumen and consists of cells provided with an extracellular cistern. Secretory cells, similar to those seen in the accessory glands, are missing. Cells with a cistern could be involved in the production of a fluid secretion determining sperm unrolling and sperm motility.  相似文献   

13.
It is generally known that the luminal surface of the choroidal epithelial cells is covered with a luxuriant coat of slender microvilli and cilia. However, extensive ultrastructural studies on the surface morphology of choroidal epithelial cells are lacking. This study, therefore, is focused on the detailed surface morphology of the choroid plexus of the lateral ventricle of adult Wistar rats using transmission and scanning electron microscopy. The animals were anesthetized, perfused with 0.9% oxygenated saline followed by 3% gluteraldehyde and the choroid plexus was processed for routine electron microscopy. The results of the ultrastructural observations presented in this study show that even the neighboring choroidal epithelial cells may express distinct morphology. In addition to the usually described morphology of choroidal epithelial cells, in this study, the presence of cells with uniform small blebs, crenulated or doughnut shaped structures, large mature blebs, or cells with an extensive network of fibers were observed. Although, dissimilar surface morphology of adjacent choroidal epithelial cells may indicate their distinct functional status, further studies are necessary to understand the physiological relevance of the varied surface morphology of choroidal epithelial cells.  相似文献   

14.
The proboscis of Hubrechtella juliae was examined using transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy to reveal more features of basal pilidiophoran nemerteans for morphological and phylogenetic analysis. The proboscis glandular epithelium consists of sensory cells and four types of gland cells (granular, bacillary, mucoid, and pseudocnidae‐containing cells) that are not associated with any glandular systems; rod‐shaped pseudocnidae are 15–25 μm in length; the central cilium of the sensory cells is enclosed by two rings of microvilli. The nervous plexus lies in the basal part of glandular epithelium and includes 26–33 (11–12 in juvenile) irregularly anastomosing nerve trunks. The proboscis musculature includes four layers: endothelial circular, inner diagonal, longitudinal, and outer diagonal; inner and outer diagonal muscles consist of noncrossing fibers; in juvenile specimen, the proboscis longitudinal musculature is divided into 7–8 bands. The endothelium consists of apically situated support cells with rudimentary cilia and subapical myocytes. Unique features of Hubrechtella's proboscis include: acentric filaments of the pseudocnidae; absence of tonofilament‐containing support cells; two rings of microvilli around the central cilium of sensory cells; the occurrence of subendothelial diagonal muscles and the lack of an outer diagonal musculature (both states were known only in Baseodiscus species). The significance of these characters for nemertean taxonomy and phylogeny is discussed. The proboscis musculature in H. juliae and most heteronemerteans is bilaterally arranged, which can be considered a possible synapomorphy of Hubrechtellidae + Heteronemertea (= Pilidiophora). J. Morphol. 274:1397–1414, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Summary The pattern of sperm retention and migration in the vagino-cervical region of rabbit was studied by means of scanning electron microscopy. The following phenomena were observed: 1) Spermatozoa located in the vagina and at the orifice of the ectocervix are usually distributed diffusely. They appear to be resting on the epithelial surface; many are structurally abnormal or decapitated. 2) The great majority of spermatozoa, however, seems to be anchored or retained in narrow epithelial channels with their heads in close file formations. This phenomenon was observed particularly in the fornix vaginae as late as 24 h post coitum. 3) A great number of spermatozoa invading the cervix evidently migrates in groups along the mucosal surface. Their heads are oriented toward the uterus and contact the epithelial cells. Spermatozoa that migrate beyond the cervico-uterine junction are distributed in the same manner. 4) Spermatozoa colonizing the cervical crypts appear to be attached via the anterior margins of their heads to the epithelial cells or to the tips of kinocilia. Their tails project into the crypt lumen. It is suggested that mainly three factors may be responsible for these phenomena: (i) the fact that only motile spermatozoa overcome the vagino-cervical barrier; (ii) the tendency of spermatozoa to move along the mucosa in close vicinity to the epithelial cells; and (iii) the inability to recognize mechanical barriers on the migration route (e.g., cervical crypts) and to overcome them quickly. This may be one of many possible causes leading to sperm retention in the vagino-cervical region.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

16.
The surface structure of the hypdrocarbon-utilizing yeast Candida tropicalis was investigated by scanning and transmission electron microscopy (SEM and TEM respectively). The sample preparation technique was based on a rapid cryofixation without any addition of cryoprotectants. In subsequently freeze-dried samples the surface structure was analysed by scanning electron microscopy. Thin sections were prepared from freeze substituted samples. Both techniques revealed hair-like structures at the surface of hydrocarbon-grown cells. The hairy surface structure of the cells was less expressed in glucose-grown cells and it was absent completely after proteolytic digestion of the cells. When cells were incubated with hexadecane prior to cyryofixation a contrast-rich region occured in the hair fringe of thin sections as revealed by TEM. Since these structures were characteristic for hexadecane-grown cells and could not be detected in glucose-grown or proteasetreated cells it was concluded that they originate from hexadecane adhering to the cell surface and are functionally related to hexadecane transport. The structure of the surface and its relation to hydrocarbon transport are discussed in view of earlier results on the chemical composition of the surface layer of the cell wall.Abbreviations SEM Scanning electron microscopy - TEM transmission electron microscopy  相似文献   

17.
Summary The surface of ependymal cells bordering the brain ventricles, and that of the epithelial cells of choroid plexuses of the cat have been investigated by means of the scanning electron microscope. The ventricle walls are entirely covered with very long and numerous cilia and no regional differences have been observed regarding their number and disposition. Among the ciliated cells dome-shaped structures are present, possibly containing nervous elements. The ependymal cells of the third ventricle floor are mainly non ciliated but the surface thereof shows numerous small microvilli. Numerous round formations are present among these cells, their nature being difficult to interpret. Also present on the floor are small cells of triangular shape with long and tortuous protrusions, tentatively identified as small neurons. The choroid plexuses have a typical sinuous structure of long tortuous villi rich in cavities and convolutions. Details of the epithelial cells covering the plexus and their surface organization are also reported.Part of these results were presented to the Septième Congrès International de Microscopie Electronique, Grenoble 1970.  相似文献   

18.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

19.
Ultrastructural and morphometric investigations were performed on the lung of the European salamander, Salamandra salamandra L. Folds of first and second order are covered with a ciliated epithelium containing goblet cells. The respiratory surface of the lung is lined by a single type of cell which, in amphibians, combines features of type I and type II alveolar cells of the mammalian lung. In the salamander the respiratory and ciliated epithelial cells as well as goblet cells possess electron dense and lucent vesicles in their cytoplasm as well as lamellar bodies. A small amount of surfactant, composed most probably of phospholipids and mucopolysaccharides, was observed covering the entire inner surface of the lung. Morphometric methods were used to determine the dimensions of the perinuclear region of pneumocytes, the thickness of the air-blood barrier and lung wall, and also the diameter of capillaries. The thickness of the respiratory air-blood barrier was found to be considerably higher than that of the corresponding barrier in mammals.  相似文献   

20.
In the optic tectum of goldfish, the outer, middle and inner layers of the endomeninx were evident in animals ranging in age from 1 month to several years. The outer layer in young animals consisted of closely overlapping cells with intertwined processes, whereas in the older animals it contained large extracellular spaces. The intermediate layer cells were always arranged in a single continuous layer, but in young animals they overlapped extensively with one another toward their edges whereas in the oldest animals they became extremely flat and non-overlapping. The inner layer included an outer tier of cells with their bases adhering to the intermediate layer, and an inner tier of cells detached from both the intermediate layer and the basal lamina overlying the brain parenchyma. Inner layer cells contained many large vacuoles that were in continuity with the extracellular space. With age, the extracellular space and the vacuolar system expanded, and the inner layer evolved into a meshwork of attenuated cytoplasmic processes embedded in the granular extracellular matrix. Another age-related feature was the accumulation adjacent to the basal lamina of uniform disc-shaped membranous structures, resembling multilamellar bodies of lung surfactant. These disc bodies were apparently generated by the coalescence of vesicles formed at the surface of the inner layer cells, possibly as a by-product of protein secretion by these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号