首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of the microbial food sources for Aedes triseriatus larvae in microcosms were found to be strongly influenced by larval presence. The total abundance of bacteria in water samples generally increased in response to larvae, including populations of cultivable, facultatively anaerobic bacteria. Additionally, a portion of the community shifted from Pseudomonaceae to Enterobacteriaceae. Bacterial abundance on leaf material was significantly reduced in the presence of actively feeding larvae. Principle-component analysis of whole community fatty acid methyl ester (FAME) profiles showed that larvae changed the microbial community structure in both the water column and the leaf material. Cyclopropyl FAMEs, typically associated with bacteria, were reduced in microcosms containing larvae; however, other bacterial fatty acids showed no consistent response. Long-chain polyunsaturated fatty acids characteristic of microeukaryotes (protozoans and meiofauna) declined in abundance when larvae were present, indicating that larval feeding reduced the densities of these microorganisms. However, presumed fungal lipid markers either increased or were unchanged in response to larvae. Larval presence also affected microbial nitrogen metabolism through modification of the physiochemical conditions or by grazing on populations of bacteria involved in nitrification-denitrification. Stemflow primarily influenced inorganic ion and organic compound concentrations in the microcosms and had less-pronounced effects on microbial community parameters than did larval presence. Stemflow treatments diluted concentrations of all inorganic ions (chloride, sulfate, and ammonium) and organic compounds (total dissolved organic carbon, soluble carbohydrates, and total protein) measured, with the exceptions of nitrite and nitrate. Stemflow addition did not measurably affect larval biomass in the microcosms but did enhance development rates and early emergence patterns of adults.  相似文献   

2.
The muricacean snail Chorus giganteus presents intracapsular development and the occurrence of nurse eggs that are ingested by the early encapsulated embryos indicate both that these snails develop through a lecitotrophic type of development and that reserves would be sufficient to support settlement and metamorphosis. In order to get more information about the use of energy resources, the dynamics of biochemical components throughout development at three temperatures (9, 12 and 15 °C) and the energetic cost of free-swimming life and metamorphosis are described. The uptake of 3H-alanine, as representative of dissolved organic matter, by embryo and larval stages is also investigated. While protein levels increased at all temperature conditions after ingestion of nurse eggs, lipids only increased when embryo and larvae were reared at 15 °C, and no change in carbohydrate levels was detected at any of the temperatures. The RNA/DNA indexes showed no significant differences with temperature at any stage of development but decreased along with the development of individuals. After hatching, organic matter and energy content of juveniles steadily decreased. Individuals at any of the developmental stage showed to be able to uptake alanine from seawater; the aminoacid uptake capacity increased along with intracapsular development. Uptake of alanine showed to be an active process and to follow Michaelis-Menten kinetics. This would be the first report about dissolved organic matter uptake by encapsulated development stages of any marine invertebrate species and let conclude that these larvae have the ability to obtain exogenous food in a dissolved form and to incorporate it into metabolizable compounds.  相似文献   

3.
The dynamics of the microbial food sources for Aedes triseriatus larvae in microcosms were found to be strongly influenced by larval presence. The total abundance of bacteria in water samples generally increased in response to larvae, including populations of cultivable, facultatively anaerobic bacteria. Additionally, a portion of the community shifted from Pseudomonaceae to Enterobacteriaceae. Bacterial abundance on leaf material was significantly reduced in the presence of actively feeding larvae. Principle-component analysis of whole community fatty acid methyl ester (FAME) profiles showed that larvae changed the microbial community structure in both the water column and the leaf material. Cyclopropyl FAMEs, typically associated with bacteria, were reduced in microcosms containing larvae; however, other bacterial fatty acids showed no consistent response. Long-chain polyunsaturated fatty acids characteristic of microeukaryotes (protozoans and meiofauna) declined in abundance when larvae were present, indicating that larval feeding reduced the densities of these microorganisms. However, presumed fungal lipid markers either increased or were unchanged in response to larvae. Larval presence also affected microbial nitrogen metabolism through modification of the physiochemical conditions or by grazing on populations of bacteria involved in nitrification-denitrification. Stemflow primarily influenced inorganic ion and organic compound concentrations in the microcosms and had less-pronounced effects on microbial community parameters than did larval presence. Stemflow treatments diluted concentrations of all inorganic ions (chloride, sulfate, and ammonium) and organic compounds (total dissolved organic carbon, soluble carbohydrates, and total protein) measured, with the exceptions of nitrite and nitrate. Stemflow addition did not measurably affect larval biomass in the microcosms but did enhance development rates and early emergence patterns of adults.  相似文献   

4.
Abstract Growth rates of marine bacterial isolates on particulate organic substrates were measured using a novel apparatus which restricts bacterial cells to the uptake of hydrolysate produced from particulate substrates only by enzymes that are actively released from the bacterium into the culture medium. Significant, varying growth rates were measured for four different marine bacteria, using three different, ecologically significant particulate organic substrates (preparations of amylopectin, chitin, and animal hide). Growth rates sometimes approached but were usually lower than rates that have been reported in laboratory experiments using dissolved organic growth substrates. These results are consistent with recent model predictions and have important implications for microbial ecology and material cycling in diverse liquid-bathed environments. Received: 26 June 1998; Accepted: 20 October 1998  相似文献   

5.
Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with 13C–15N‐enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO3–N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.  相似文献   

6.
Frouz  Jan  Lobinske  Richard J.  Ali  Arshad 《Hydrobiologia》2004,518(1-3):169-177
Two opposite distribution patterns of larval Glyptotendipes paripes in relation to organic carbon content in sediments of central Florida lakes were discovered. In a majority of examined lakes, G. paripes larvae were most abundant in sand sediment and their density rapidly declined with increased carbon content (type 1 lakes); however, in some cases the opposite was true (type 2 lakes). To elucidate this anomaly, field-collected organic sediments from types 1 and 2 lakes and sand sediment were studied for G. paripes development in the laboratory. Type 1 organic sediment consisted predominantly of fine particles (<0.25 mm diameter) with low dissolved oxygen levels, whereas type 2 organic sediments consisted primarily of chironomid large faecal pellet aggregates (>0.25 mm diameter), with significantly higher levels of dissolved oxygen concentrations that were similar to sand sediment. Type 2 organic sediment and sand sediment were conducive to higher survival of G. paripes larvae than fine organic sediment. The larvae in type 2 organic sediment produced longer tubes than in other sediment types. This observation indicates that accumulation of chironomid faecal pellets in lake sediments may change physical properties, such as dissolved oxygen level and consequently alter conditions for survival of chironomid larvae and possibly other benthic fauna.  相似文献   

7.
Marine primary fouling films, which consist of molecular organic and microbial components, have been reported to facilitate colonization of immersed surfaces by marine fouling organisms. Larvae of the cosmopolitan fouling bryozoan Bugula neritina (Linnaeus) were offered various substrata for attachment and metamorphosis. The materials were offered (a) after detergent washing, (b) after sorption of dissolved organic molecular films, and (c) after formation of primary films consisting of both microbial and adsorbed organic material. Wettability of the substrata by sea water was determined by contact angle measurements for each substratum. On washed substrata, attachment was favored with contact angles greater than ≈45° (cos contact angle <0.7). Adsorbed surface films had no effect on the low settlement of larvae on glass and high settlement on plastics. Microbial primary films, however, made glass attractive and plastics unattractive. These settlement preference changes did not correlate with the changes in wettability observed on these substrata. Dispersion of larvae over the settlement surface was random except on wettable surfaces coated with bacterial films, where settlement was strongly clustered (contagious).  相似文献   

8.
Studies were conducted between May and June, 2006 to investigate the environmental factors affecting the distribution of An. arabiensis Patton and Culex quinquefasciatus Say in Mwea, Kenya. The sampling unit comprised all non-paddy aquatic habitats and ten randomly selected paddies and canals located within a 200 m radius from the periphery of the study site. Thirteen physico-chemical variables were recorded for each sampling site in each sampling occasion and a sample of mosquito larvae and other aquatic invertebrates collected. The non-paddy aquatic habitats identified included pools and marshes. Morphological identification of 1,974 mosquito larvae yielded four species dominated by Cx. quinquefasciatus (73.2%) and An. arabiensis (25.0%). Pools were associated with significantly higher Cx. quinquefasciatus larval abundance and less diversity of other aquatic invertebrates compared with other habitat types. In contrast, the abundance of An. arabiensis did not differ significantly among habitat types. Culex quinquefasciatus habitats had higher water conductivity and exhibited a higher abundance of other aquatic invertebrates than An. arabiensis habitats. Chi-square analysis indicated that the two species were more likely to coexist in the same habitats than would be expected by chance alone. Anopheles arabiensis larvae were positively associated with dissolved oxygen and adults of family Haliplidae and negatively associated with emergent vegetation and Heptageniidae larvae. Culex quinquefasciatus larvae were positively associated with dissolved oxygen, total dissolved solids, Chironomidae larvae, and Microvelidae adults and negatively associated with emergent vegetation. These findings suggest that both biotic and abiotic factors play a significant role in niche partitioning among Cx. quinquefasciatus and An. arabiensis, a factor that should be considered when designing an integrated vector control program.  相似文献   

9.
Summary The trophic strategies were studied of Heteroxenia fuscescens living in shallow tropical waters. Structural and physiological adaptations show that particulate food is of less nutritional importance than the uptake of organic material dissolved in the sea, the utilization of assimilates of cytosymbiotic algae (zooxanthellae) and even the symbionts themselves. The external and internal surfaces of the tentacles are enlarged by featherlike pinnules, on the one hand facilitating the epidermal uptake of dissolved organic compounds and on the other offering wellilluminated spaces in which large numbers of zooxanthellae can be cultivated.Zooxanthellae expelled from gastrodermal cells may be taken up by the mesenteric filaments of the dorsal mesenteries, where they are often decomposed and utilized. The transport of photo-assimilates from the gastrodermis to the epidermis through the mesogloea takes place at a low rate. Most of the released assimilates of the symbionts appear in the coelenteron. One fraction of these assimilates is distributed within the gastric channel system and can be taken up by developing stages living there; another fraction reaches the epidermis extracorporally via the pharynx and the sea. Thus both the pharynx and the epidermis absorb these photo-assimilates. The epidermal uptake capacity serves two main purposes: (1) active uptake and incorporation of external organic material dissolved in the sea; (2) reabsorption of internal, self-produced organic material, i.e. reduction of the loss of endogenous compounds escaping from the gastric cavity necessarily due to the polyfunctionality of the coelenteron.  相似文献   

10.
To counteract water loss due to excretion, cuticular transpiration and respiration, various groups of arthropods have developed mechanisms for active uptake of water vapor from unsaturated air. In this study, active uptake capabilities and water loss rates were examined in the various developmental stages of the cat flea, Ctenocephalides felis. To determine critical equilibrium humidity, the lowest relative humidity at which active water uptake can occur, pre-desiccated immature and adult fleas were placed in a series of humidity regimes ranging from 44 to 93% RH. Active uptake occurred in larval stages at relative humidities above 53% and in pre-pupae at 75-93% RH. Pupae and adults did not demonstrate active uptake at any humidity. Optimal uptake for larvae occurred between 20 and 30 degrees C. When placed over Drierite (<10% RH), larval and adult stages demonstrated a higher rate of water loss than pre-pupal and pupal stages. Active water uptake is necessary to ensure proper development of the larvae of C. felis. Active uptake ceases after the larval-pupal ecdysis and it appears that adults have lost the ability to actively uptake water.  相似文献   

11.
Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake’s rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum.  相似文献   

12.
Jennifer Owen 《Ecography》1981,4(3):221-228
28924 hoverflies of 85 species were caught in a Malaise trap in an English suburban garden during the eight-year period 1972–79, and three additional species were hand-netted. Hoverfly larvae fall into five trophic categories all of which were represented by adults in the trap sample. 82.71% of the hoverflies trapped have larvae that feed on aphids, 12.04% feed on decaying organic material, 5.14% eat living plants, 0.09% scavenge in Hymcnoptera nests, and 0.02% are associated with tree sap or rotting wood. The relative frequency of the different trophic groups varied annually and seasonally although the aphid-feeders were nearly always the most abundant. 22 species are believed to breed in the garden, and a further 29 in the surrounding area; 15 species are regarded as casual and 22 as chance visitors. It is suggested that the high plant diversity and spatial heterogeneity of gardens result in them supporting more species than would be found in a natural area.  相似文献   

13.
The uptake of inorganic nutrients by heterotrophic bacteria   总被引:25,自引:3,他引:22  
It is now well known that heterotrophic bacteria account for a large portion of total uptake of both phosphate (60% median) and ammonium (30% median) in freshwaters and marine environments. Less clear are the factors controlling relative uptake by bacteria, and the consequences of this uptake on the plankton community and biogeochemical processes, e.g., new production. Some of the variation in reported inorganic nutrient uptake by bacteria is undoubtedly due to methodological problems, but even so, uptake would be expected to vary because of variation in several parameters, perhaps the most interesting being dissolved organic matter. Uptake of ammonium by bacteria is very low whereas uptake of dissolved free amino acids (DFAA) is high in eutrophic estuaries (the Delaware Bay and Chesapeake Bay). The concentrations and turnover of DFAA are insufficient, however, in oligotrophic oceans where bacteria turn to ammonium and nitrate, although the latter only as a last resort. I argue here that high uptake of dissolved organic carbon, which has been questioned, is necessary to balance the measured uptake of dissolved inorganic nitrogen (DIN) in seawater culture experiments. What is problematic is that this DIN uptake exceeds bacterial biomass production. One possibility is that bacteria excrete dissolved organic nitrogen (DON). A recent study offers some support for this hypothesis. Lysis by viruses would also release DON.While ammonium uptake by heterotrophic bacteria has been hypothesized to affect phytoplankton community structure, other impacts on the phytoplankton and biomass production (both total and new) are less clear and need further work. Also, even though bacteria account for a very large fraction of phosphate uptake, how this helps to structure the plankton community has not been examined. What is clear is that the interactions between bacterial and phytoplankton uptake of inorganic nutrients are more complicated than simple competition.  相似文献   

14.
Utilization of dissolved organic matter (DOM) is thought to be the purview of heterotrophic microorganisms, but photoautotrophs can take up dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). This study investigated DOC and DON uptake in a laminated cyanobacterial mat community from hypersaline Salt Pond (San Salvador, Bahamas). The total community uptake of (3)H-labeled substrates was measured in the light and in the dark and under conditions of high and low salinity. Salinity was the primary control of DOM uptake, with increased uptake occurring under low-salinity, 'freshened' conditions. DOC uptake was also enhanced in the light as compared with the dark and in samples incubated with the photosystem II inhibitor 3(3,4-dichlorophenyl)-1, 1-dimethylurea, suggesting a positive association between photosynthetic activity and DOC uptake. Microautoradiography revealed that some DOM uptake was attributed to cyanobacteria. Cyanobacteria DOM uptake was negatively correlated with that of smaller filamentous microorganisms, and DOM uptake by individual coccoid cells was negatively correlated with uptake by colonial coccoids. These patterns of activity suggest that Salt Pond microorganisms are engaged in resource partitioning, and DOM utilization may provide a metabolic boost to both heterotrophs and photoautrophs during periods of lowered salinity.  相似文献   

15.
Bacterial uptake of algal exudates has been estimated in a tropicalestuary, Dona Paula, where the seasonal fluctuations in hydrographicand nutrient parameters as well as dissolved organic matterconcentrations and phytoplankton species composition are dominatedby the monsoon regime. A close coupling existed between algaland bacterial trophic levels. Algal exudation products wererapidly assimilated with short turnover times. An average 80%of the excreted material was removed by heterotrophic bacteriaand there was a significant correlation between algal extracellularproduction and net bacterial uptake of algal exudates.  相似文献   

16.
Sedimentary bacteria have generally been recognized as an essential food for protists and invertebrates, forming the base of benthic food webs. This trophic role has been well documented, but bacteria play an equally important role as mineralizers of organic detritus and recyclers of essential nutrients. Recent evidence suggests that this latter role is more important than their trophic function in tropical mangrove and coastal sediments. Bacteria in these systems are, on average, more abundant and productive than their counterparts in higher-latitude systems. They account for a disproportionate share of nutrient uptake to the extent that bacterial communities act as a sink for carbon, processing most of the energy and nutrients in tropical aquatic systems. Most bacteria remain unconsumed in tropical deposits, dying naturally and lysing, with the next generation of cells consuming, mineralizing and recycling this material either into new biomass or dissolved material. Bacteria in tropical aquatic sediments are ultimately controlled by inputs of dissolved and particulate detritus, natural mortality and recycling. To replenish damaged ecosystems in the tropics, restoration of the natural geochemical profile in the sediments is necessary to re-initiate the growth of bacteria in order to restore the essential recycling processes which assist in the conservation of nutrients.  相似文献   

17.
The appearance of large supranuclear vacuoles in the enterocytes of 1- and 4-days post-hatch larvae of turbot and herring, respectively, revealed by the pinocytotic uptake of a fluorescent marker (FITCdextran), indicates a potential for the absorption of dissolved nutrients by the endotrophic stages of marine fish larvae. Ingestion of algal cells by turbot larvae was observed soon after hatching, but low level pinocytotic absorption of algal material was first seen during the second day. More extensive lysis of algal cells and pinocytotic absorption occurred 24 h later. Although lysis of I. galbana was shown to occur at low external osmolarities, it is unlikely that sufficiently low osmolarities present in the hind gut of turbot larvae explained the observed rupture of algae. Other mechanisms for digestion are discussed. In newly hatched herring larvae, algal cells were unable to pass beyond the constriction in the mid-gut caused by the yolk sac. When algal cells were eventually seen to pass into the hind gut, there was no evidence of algal digestion or absorption throughout the remaining endotrophic and early exotrophic stages of herring larvae, although pinocytosis was observed to occur mid-way through the endotrophic stage.  相似文献   

18.
Spatial uptake of dissolved organic carbon in river beds   总被引:3,自引:2,他引:1  
The uptake of dissolved organic carbon by three stream bed components; surface stones, underlying gravel and organic floc was measured in three rivers in North Wales, U.K. Overall, surface stones and underlying gravel appeared to be the major sites of uptake but the relative importance of these two components varied both temporally and spatially. Organic floc was found to be relatively unimportant as a site of dissolved organic carbon uptake.  相似文献   

19.
Blooms of the brown tide pelagophyte, Aureococcus anophagefferens, have been reported in coastal bays along the east coast of the USA for nearly two decades. Blooms appear to be constrained to shallow bays that have low flushing rates, little riverine input and high salinities (e.g., >28). Nutrient enrichment and coastal eutrophication has been most frequently implicated as the cause of A. anophagefferens and other blooms in coastal bays. We compare N and C dynamics during two brown tide blooms, one in Quantuck Bay, on Long Island, NY in 2000, and the other in Chincoteague Bay, at Public Landing, MD in 2002, with a physically similar site in Chincoteague Bay that did not experience a bloom. We found that the primary forms of nitrogen (N) taken up during the bloom in Quantuck Bay were ammonium and dissolved free amino acids (DFAA) while the primary form of N fueling production at both sites in Chincoteague Bay was urea. At both Chincoteague sites, amino acid carbon (C) was taken up while urea C was not. Even though A. anophagefferens has the ability to take up organic C, during the bloom at Chincoteague Bay, photosynthetic uptake of bicarbonate was the dominant pathway of C acquisition by the >1.2 μm size fraction during the day. C uptake by cells <5.0 μm was insufficient to meet cellular C demand based on the measured N uptake rates and the C:N ratio of particulate material. While cells >1.2 μm did not take up much organic C during the day, smaller cells (>0.2 μm) did. Peptide hydrolysis appeared to play an important role in mobilizing organic matter in Quantuck Bay, where amino acids contributed substantially to N and C uptake, but not in Chincoteague Bay. Dissolved organic N (DON), dissolved organic C (DOC) concentrations and the DOC/DON ratio were higher and total dissolved inorganic N (DIN) concentrations were lower at the bloom site in Chincoteague Bay than at the nonbloom site in the same bay. We conclude that A. anophagefferens is capable of using a wide variety of N and C compounds, and that nutrient inputs, biotic interactions and the dominant recycling pathways determine which compounds are available and which metabolic pathways are active at a particular site.  相似文献   

20.
Dynamics of extracellular DNA in the marine environment   总被引:12,自引:0,他引:12  
The production and turnover of dissolved DNA in subtropical estuarine and oligotrophic oceanic environments were investigated. Actively growing heterotrophic bacterioplankton (i.e., those capable of [3H]thymidine incorporation) were found to produce dissolved DNA, presumably through the processes of death and lysis, grazing by bacteriovores, and excretion. Production of dissolved DNA as determined by [3H]thymidine incorporation was less than or equal to 4% of the ambient dissolved DNA concentration per day. In turnover studies, the addition of [3H]DNA (Escherichia coli chromosomal) to seawater resulted in rapid hydrolysis and uptake or radioactivity by microbial populations. DNA was hydrolyzed by both cell-associated and extracellular nucleases, in both estuarine and offshore environments. Kinetic analysis performed for a eutrophic estuary indicated a turnover time for dissolved DNA as short as 6.5 h. Microautoradiographic studies of bacterial populations in Tampa Bay indicated that filamentous and attached bacteria took up most of the radioactivity from [3H]DNA. Dissolved DNA is therefore a dynamic component of the dissolved organic matter in the marine environment, and bacterioplankton play a key role in the cycling of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号