首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

2.
The effect of human tumor necrosis factor (TNF) on the permeability properties of liposomes containing phosphatidylserine at pH 5-6, as demonstrated by the calcein efflux. However, it did not induce any permeability change in such liposomes at neutral pH. The TNF-induced calcein efflux was also observed when an other acidic lipid was used as a component of the liposomes, i.e., phosphatidic acid or dicetyl phosphate. On the other hand, liposomes composed of neutral phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin showed little increases in permeability when incubated with TNF above pH 5.0. The TNF-induced permeability change was inhibited by the addition of polyaspartic acid, while it was not affected by the presence of 0.5 mM calcium ions. These data suggest that the negative charges on the liposomal surface trigger the interaction between TNF and liposomes. However, when the pH of the reaction mixture was decreased to 4.5, TNF-induced calcein efflux was observed even from neutral liposomes. When TNF was incubated with 8-anilinonaphthalene-1-sulfonic acid, the fluorescence intensity of this fluorophore increased with a decrease in the pH of the solution from 7 to 5, and a drastic increase in fluorescence was observed at pH 4.5. These data suggest that the hydrophobic region of TNF is also important for liposomal damage. Furthermore, the potencies of TNF and its derivative as to the induction of the permeability change paralleled their cytotoxic effects on mouse L929 cells, suggesting that the effect of TNF on liposomal membranes is related to its biological action.  相似文献   

3.
Pegylated liposomal doxorubicin (Doxil) and 99mTc-HYNIC PEG liposomes (HPL) were reported earlier to cause hypersensitivity reactions (HSRs) in a substantial percentage of patients treated i.v. with these formulations. Here we report that (1) Doxil, HPL, pegylated phosphatidylethanolamine (PEG-PE)-containing empty liposomes matched with Doxil and HPL in size and lipid composition, and phosphatidylglycerol (PG)-containing negatively charged vesicles were potent C activators in human serum in vitro, whereas small neutral liposomes caused no C activation. (2) Doxil and other size-matched PEG-PE and/or PG-containing liposomes also caused massive cardiopulmonary distress with anaphylactoid shock in pigs via C activation, whereas equivalent neutral liposomes caused no hemodynamic changes. (3) A clinical study showed more frequent and greater C activation in patients displaying HSR than in non-reactive patients. These data suggest that liposome-induced HSRs in susceptible individuals may be due to C activation, which, in turn, is due to the presence of negatively charged PEG-PE in these vesicles.  相似文献   

4.
ABSTRACT

Pegylated liposomal doxorubicin (Doxil) and 99mTc-HYNIC PEG liposomes (HPL) were reported earlier to cause hypersensitivity reactions (HSRs) in a substantial percentage of patients treated i.v. with these formulations. Here we report that (1) Doxil, HPL, pegylated phosphatidylethanolamine (PEG-PE)-containing empty liposomes matched with Doxil and HPL in size and lipid composition, and phosphatidylglycerol (PG)-containing negatively charged vesicles were potent C activators in human serum in vitro, whereas small neutral liposomes caused no C activation. (2) Doxil and other size-matched PEG-PE and/or PG-containing liposomes also caused massive cardiopulmonary distress with anaphylactoid shock in pigs via C activation, whereas equivalent neutral liposomes caused no hemodynamic changes. (3) A clinical study showed more frequent and greater C activation in patients displaying HSR than in non-reactive patients. These data suggest that liposome-induced HSRs in susceptible individuals may be due to C activation, which, in turn, is due to the presence of negatively charged PEG-PE in these vesicles.  相似文献   

5.
Interaction of wasp venom mastoparan with biomembranes   总被引:1,自引:0,他引:1  
Mastoparan-induced changes in the K+ permeability of rat peritoneal mast cells, human erythrocytes, Staphylococcus aureus and Escherichia coli were examined. Mastoparan did not efficiently increase the K+ permeability of cells except for S. aureus. The release of membrane phospholipids was also observed from S. aureus cells in the concentration range of the permeability enhancement. Mastoparan stimulated histamine release from mast cells, independently of a small efflux of K+. Mastoparan became markedly effective to E. coli cells whose outer membrane structure was chemically disrupted beforehand, showing that the peptide can enhance the permeability of the cytoplasmic membranes of both Gram-positive and -negative bacteria. In experiments using liposomes, mastoparan increased the permeability of the liposomes composed of egg phosphatidylethanolamine and egg phosphatidylglycerol, which are the lipid constituents of the cytoplasmic membrane of E. coli cells, while it showed a weak activity to the liposomes composed of egg phosphatidylcholine and cholesterol. The latter result related closely to the fact that this peptide acted weakly on erythrocytes and mast cells in which acidic lipids constitute a minor portion. Mastoparan decreased the phase transition temperature of dipalmitoylphosphatidylglycerol liposomes, but it did not affect that of dipalmitoylphosphatidylcholine liposomes. These results indicate that mastoparan penetrated into membranes mainly containing acidic phospholipids and disrupted the membrane structure to increase the permeability. The action of the wasp venom mastoparan was compared with that of a bee venom melittin.  相似文献   

6.
Temporins are short (10-13 amino acids) and linear antimicrobial peptides first isolated from the skin of the European red frog, Rana temporaria, and are effective against Gram-positive bacteria and Candida albicans. To get insight into their mechanism(s) of action, we compared the effects on model membranes exerted by two members of this family, viz., temporin B (LLPIVGNLLKSLL-NH(2)) and temporin L (FVQWFSKFLGRIL-NH(2)). More specifically, we measured their insertion into lipid monolayers as well as their effects on the structural dynamics of liposomal bilayers as revealed by diphenylhexatriene (DPH)- and pyrene-labeled phospholipids. We also observed the impact of these peptides on the topology of giant vesicles. Both temporins readily penetrate into lipid monolayers, their intercalation being enhanced in the presence of the common bacterial negatively charged phospholipid phosphatidylglycerol. Instead, the eukaryotic lipid cholesterol did to some extent counteract their penetration into the lipid films. Both temporin B and temporin L caused an enrichment of phospholipids in the bilayers, and in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), these peptides increased acyl chain order. Temporin B had practically no effect on giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), whereas rapid vesiculation was observed when POPG was present. In contrast, temporin L induced vesiculation of both SOPC and SOPC/POPG giant vesicles while the presence of cholesterol in SOPC giant vesicles attenuated this effect.  相似文献   

7.
The fusion behavior of large unilamellar liposomes composed of N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) and either phosphatidylcholine (PC) or phosphatidylethanolamine (PE) has been investigated by a fluorescence resonance energy transfer assay for lipid mixing, dynamic light scattering, and electron microscopy. Polyvalent anions induced the fusion of DOTMA/PE (1:1) liposomes with the following sequence of effectiveness: citrate greater than EDTA greater than phosphate, in the presence 100 mM NaCl, pH 7.4. Sulfate, dipicolinate, and acetate were ineffective. DOTMA/PC (1:1) vesicles were completely refractory to fusion in the presence of multivalent anions in the concentration range studied, consistent with the inhibitory effect of PC in divalent cation induced fusion of negatively charged vesicles. DOTMA/PE vesicles could fuse with DOTMA/PC vesicles in the presence of high concentrations of citrate, but not of phosphate. Mixing of DOTMA/PE liposomes with negatively charged phosphatidylserine (PS)/PE or PS/PC (1:1) vesicles resulted in membrane fusion in the absence of multivalent anions. DOTMA/PC liposomes also fused with PS/PE liposomes and, to a limited extent, with PS/PC liposomes. These observations suggest that the interaction of the negatively charged PS polar group with the positively charged trimethylammonium of DOTMA is sufficient to mediate fusion between the two membranes containing these lipids and that the nature of the zwitterionic phospholipid component of these vesicles is an additional determinant of membrane fusion.  相似文献   

8.
The rate of release from multilamellar liposomes of the fluorescent probe carboxyfluorescein was determined as a measure of membrane permeability. Liposomes of phosphatidylcholine and different anionic phospholipids were incubated with low (1 microM) and high (3 mM) concentrations of calcium in the absence or presence of aminoglycoside antibiotics. The leakage of carboxyfluorescein into the medium was not caused by liposomal fusion as no vesicle fusion was observed in experiments with terbium and dipicolinic acid-loaded liposomes. The basal rate of carboxyfluorescein release (in the absence or presence of 1 microM calcium) from all types of liposomes ranged from 0.1 to 0.3% of trapped carboxyfluorescein per hour. The presence of 3 mM calcium caused the greatest increase in the rate of carboxyfluorescein release (about 9-fold) in liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP2) whereas liposomes containing the other anionic phospholipids (phosphatidylserine, phosphatidylinositol and phosphatidylinositol 4-phosphate) showed an approximate 5-fold increase. In the presence of 1 microM calcium, the aminoglycosides neomycin and gentamicin also increased the rate of carboxyfluorescein release, with PIP2-containing liposomes showing a 3-5-times greater response than the other liposomes, releasing up to 4.6% of trapped carboxyfluorescein per hour. This drug-induced release was dose-dependent and antagonized by calcium. In the presence of 3 mM calcium, 0.1 mM gentamicin or neomycin were ineffective while the drug at 1 mM affected carboxyfluorescein release from PIP2-liposomes only. The aminoglycoside antibiotics, neomycin, gentamicin, tobramycin, kanamycin, amikacin, netilmicin, as well as neamine and spectinomycin (all at 0.1 mM) showed a graded effect on the rate of carboxyfluorescein release from PIP2-containing vesicles in the presence of 0.1 mM calcium. The magnitude of the effect correlated well with the ototoxicity of the drugs previously determined directly in cochlear perfusions in the guinea pig. The study demonstrates that aminoglycoside antibiotics are capable of altering membrane permeabilities and that this effect is most pronounced if PIP2 is present in the bilayers. The excellent correlation between this membrane action and the in-situ toxicity of the drugs further establishes the specific role of PIP2 in the molecular mechanism of aminoglycoside-induced hearing loss. Moreover, it confirms the usefulness of such physicochemical models for the screening and prediction of aminoglycoside toxicity.  相似文献   

9.
Large vesicles (5-10-micron in diameter) were formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera and digital image processor. When such vesicles contained a fluorescent phosphatidic acid (PA) and were exposed to 2 mM CaCl2 or 0.5 mM PrCl3, it was possible to visualize PA-enriched domains within the vesicles. Calcium-induced domain formation was reversible in the presence of 4 mM EGTA. Vesicles were formed containing fluorescent PA on either the inner or outer leaflet of the bilayer and the patching and dissolution of patching were studied under conditions where calcium was present on the outside of the vesicle and where calcium was distributed across the bilayer. In addition, vesicles were formed with two different fluorescent PA's, one on the inner leaflet and a different one on the outer leaflet of the bilayer. The results of the experiments show that in vesicles formed primarily with naturally occurring phospholipids such as egg phosphatidylcholine or brain phosphatidylethanolamine, there was no coordinate action of the two leaflets of the bilayer. An exception to this was found, however, if the vesicles were formed in the presence of primarily dioleoyl phospholipids (greater than 95 mol %). In these vesicles there was a coordinate or coupled response to calcium by the two leaflets of the bilayer. In most cases, however, the two leaflets of the bilayer showed independent or uncoupled domain formation.  相似文献   

10.
The rates of exchange of [4-14C]cholesterol between lipid vesicles prepared with different phospholipids and with different sizes have been measured. The first-order rate constants were higher using vesicles prepared from phosphatidylcholines with highly branched or polyunsaturated fatty acyl chains than with saturated diacyl or di-O-alkyl chains. The rate measurements indicate that the affinity of cholesterol for phospholipid does not vary significantly on change of the type of linkage (ether or ester) in phosphatidylcholine (PC) or of the positions of the fatty acyl chains in 1,2-diacyl-PC bearing one saturated and one unsaturated chain; furthermore, egg phosphatidylglycerol and egg phosphatidylethanolamine appear to have comparable affinities for cholesterol. However, the molecular packing in the bilayer and nearest-neighbor interactions involving cholesterol appear tightened more by N-palmitoylsphingomyelin than by dipalmitoyl-PC; on incorporation of 44 mol % of these phospholipids (which have the same fatty acyl chain composition) into either small or large unilamellar vesicles prepared with egg phosphatidylglycerol, the exchange rates were strikingly slower when the donor species contained sphingomyelin compared with PC. The rate of cholesterol exchange was 100% faster with small unilamellar vesicles than with large unilamellar vesicles as donors, suggesting that the looser packing in the highly curved small vesicles facilitates cholesterol desorption. The cholesterol exchange rate did not vary with the size of the acceptor vesicles, which indicates that desorption is the rate-limiting step in the exchange process in the presence of excess acceptors.  相似文献   

11.
The phase diagram of fully hydrated mixtures of dipalmitoylphosphatidylethanolamine and -phosphatidylglycerol was constructed and the coexistence lines of the solidus and liquidus curve calculated based on regular solution theory using two nonideality parameters for each of the phase to account for nonideal and nonsymmetric mixing. Both lipids show nonideal miscibility in the liquid-crystalline phase, while a region of immiscibility exists in the lamellar-gel phase between the mole fraction x(DPPE)=0.05-0.4. Two lines of three-phase coexistence around 35 and 40 degrees C reflects the presence of lipid domains predominantly composed of phosphatidylglycerol as well as of the mixed lipid system. This is reflected in the positive nonideality parameters of the gel phase obtained from the simulation of the phase diagram. Moreover, segregation of pure phosphatidylethanolamine domains was detected in mixtures x(DPPE)>0.9, which formed multilamellar liposomes, while unilamellarity was observed for the mixed lipid systems owing to the presence of the negatively charged phosphatidylglycerol. The packing constraints of these phospholipids, major components of cytoplasmic bacterial membranes, may be of importance in the interaction with various solutes like antimicrobial peptides, and were explained based on the nature of the headgroups and the molecular geometry of the phospholipids.  相似文献   

12.
The capacity of myelin basic protein or of poly-L-lysine to promote leakage of carboxyfluorescein from vesicles or the aggregation of vesicles was studied. The vesicles were composed of phosphatidylcholine as the sole or major lipid component. Addition of 10% sphingomyelin, 10% phosphatidylglycerol, 10% egg or bovine brain phosphatidylethanolamine, or 30% dodecanal had relatively little effect on the extent of carboxyfluorescein release in the presence of either myelin basic protein or poly-L-lysine. In contrast with these results, the extent of vesicle aggregation was very sensitive to lipid composition. Addition of 10% phosphatidylglycerol induced more aggregation than the other phospholipids tested. Admixing 10% of a partially degraded sample of bovine brain phosphatidylethanolamine also led to a large amount of aggregation induced by the myelin basic protein. This latter aggregation appeared more specific for the basic protein, as it occurred to a much smaller extent with poly-L-lysine. In general, the effects of the myelin basic protein on either carboxyfluorescein release or vesicle aggregation were similar to, although somewhat greater than, that of poly-L-lysine. The aggregation of vesicles containing degradation products of phosphatidylethanolamine can be ascribed largely to the presence of aliphatic aldehydes. The effect of aliphatic aldehydes was specific in that the aliphatic alcohol, hexadecanol, or the short-chain aldehydes, acetaldehyde or butyraldehyde, did not promote myelin basic protein-induced vesicle aggregation. In addition, poly-L-lysine was less effective than the basic protein in aggregating vesicles containing aliphatic aldehydes. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The major phospholipid exchange protein from bovine brain catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between rat liver microsomes and sonicated liposomes. The effect of liposomal lipid composition on the transfer of these phospholipids has been investigated. Standard liposomes contained phosphatidylcholine-phosphatidic acid (98:2, mol%); in general, phosphatidylcholine was substituted by various positively charged, negatively charged, or zwitterionic lipids. The transfer of phosphatidylinositol was essentially unaffected by the incorporation into liposomes of phosphatidic acid, phosphatidylserine, or phosphatidylglycerol (5–20 mol%) but strongly depressed by the incorporation of stearylamine (10–40 mol%). Marked stimulation (2–4-fold) of transfer activity was observed into liposomes containing phosphatidylethanolamine (2–40 mol%). The inclusion of sphingomyelin in the acceptor liposomes gave mixed results: stimulation at low levels (2–10 mol%) and inhibition at higher levels (up to 40 mol%). Cholesterol slightly diminished transfer activity at a liposome cholesterol/phospholipid molar ratio of 0.81. Similar effects were noted for the transfer to phosphatidylcholine from microsomes to these various liposomes. Compared to standard liposomes, the magnitude of Km tended to increase for liposomes which depressed phospholipid transfer and to decrease for those which stimulated; little change was observed in the values of V. Single phospholipid liposomes of phosphatidylinositol were inhibitory when added to standard liposomes.  相似文献   

14.
A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroform-methanol-water (10:5:1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability vesicles to 22-Na-+ by 2-3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na-+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.  相似文献   

15.
The interaction of botulinum neurotoxins serotypes A, B and E (from Clostridium botulinum) and of tetanus neurotoxin (from Clostridium tetani) with the surface of liposomes made of different lipid compositions was studied by photolabelling with a radioiodinated photoactive phosphatidylethanolamine analogue [125I-dipalmitoyl (3,4-azidosalicylamido)phosphatidylethanolamine]. When the vesicles were made of negatively charged lipids (asolectin), each of these neurotoxic proteins was radioiodinated, thus providing evidence for their attachment to the membrane surface. The presence of gangliosides on liposome membranes enhanced fixation of the neurotoxic proteins to the lipid vesicle surface. Both the heavy and light chains of the clostridial neurotoxins were involved in the attachment to the lipid bilayer surface. Each of the toxins tested here attached poorly to liposomes made of zwitterionic lipids (egg phosphatidylcholine), even when polysialogangliosides were present. The data suggest that the binding of botulinum and tetanus neurotoxins to their target neuronal cells involves negatively charged lipids and polysialogangliosides on the cell membrane.  相似文献   

16.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

17.
Shift of Pseudomonas fluorescens NCMB 129 from a phosphate rich into a phosphate limited medium results in a reduction of the membrane phospholipids phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. Concomitantly a positively charged ornithine amide lipid is synthesized. The gradual increase of this lipid is paralleled by an increasing resistance to polymyxin B. The binding capacities of intact cells, and isolated inner and outer membranes for the antibiotic are reduced in the resistant organisms. It is discussed that the observed effect could be circumstantial evidence that the positively charged polymyxin B needs negatively charged receptors in biological membranes in order to exert its antibiotic activity.List of Abbreviations PE phosphatidylethanolamine - PG phosphatidylglycerol - CL cardiolipin - PX polymyxin B  相似文献   

18.
Combined phosphorus-31 nuclear magnetic resonance (31P NMR) and electron microscopic studies were performed on the ADP/ATP carrier protein from beef heart mitochondria. The protein was incorporated into phospholipids by addition of Triton-protein micelles to a lipid suspension or to the dry lipid. All of the phospholipid (egg phosphatidylcholine or mixtures of egg phosphatidylcholine and egg phosphatidylethanolamine) that contributed to the observed 31P NMR signal under these conditions appeared to be in a bilayer configuration. Freeze-fracturing and negative-staining electron microscopy showed unilamellar vesicles and multilayers. An isotropic signal could be attributed to vesicle rotation, judging from its sensitivity to increasing viscosity. The presence of small vesicles was also noticeable in the 31P NMR spectra of planar oriented membranes. In the presence of phosphatidylethanolamine, aggregation of protein particles was observed. Gel chromatography of the protein-Triton-phospholipid mixture revealed that, before Triton removal, large amounts of protein are associated with multibilayers. Separation of loaded and unloaded membranes by centrifugation in D2O showed that, upon stepwise addition, protein incorporates preferentially into unloaded liposomes. From these findings a mechanism of protein reincorporation was deduced.  相似文献   

19.
A new class of lipids, containing the closo-dodecaborate cluster, has been synthesized. Two lipids, S-(N, N-(2-dimyristoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N, N-(2-dipalmitoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-16) are described. Both of them have a double-tailed lipophilic part and a headgroup carrying two negative charges. Differential scanning calorimetry shows that B-6-14 and B-6-16 bilayers have main phase transition temperatures of 18.8 and 37.9 degrees C, respectively. Above the transition temperature of 18.8 degrees C, B-6-14 can form liposomal vesicles, representing the first boron-containing lipid with this capability. Upon cooling below the transition temperature, stiff bilayers are formed. When incorporated into liposomal formulations with equimolar amounts of distearoyl phosphatidylcholine (DSPC) and cholesterol, stable liposomes are obtained. The zeta-potential measurements indicate that both B-6-14- and B-6-16-containing vesicles are negatively charged, with the most negative potential described of any liposome so far. The liposomes are of high potential value as transporters of boron to tumor cells in treatments based on boron neutron capture therapy (BNCT). Liposomes prepared from B-6-14 were slightly less toxic in V79 Chinese hamster cells (IC50 5.6 mM) than unformulated Na2B12H11SH (IC50 3.9 mM), while liposomes prepared from B-6-16 were not toxic even at 30 mM.  相似文献   

20.
In this study, the effect of aging, in terms of hydrolytic decomposition of the bilayer forming (phospho)lipids, on the physical stability of aqueous liposome dispersion was investigated in partially hydrogenated egg phosphatidylcholine (PHEPC) and egg phosphatidylglycerol (EPG) containing liposomes with or without cholesterol. The physical stability of the liposome dispersions was assessed by measuring the leak-in rate of a non-bilayer interacting hydrophilic marker molecule, calcein and changes in the particle size and its distribution in time. Additionally, permeability of either partially hydrolysed phospholipids or exogenous lyso-phosphatidylcholine(LPC) containing bilayers was calculated. The experiments were performed at 40 degrees C. Liposome dispersions were aged artificially by storing at 60 degrees C. The size of the liposomes and polydispersity index of the dispersions, in general, did not change significantly. The leak-in rate of calcein in externally added LPC containing liposomes was increased relative to the incorporated LPC concentration. The higher the LPC content of the bilayers, the higher the leak-in rate of calcein into liposomes. The leak-in rate of calcein, however, decreased first in partially hydrolysed phospholipids containing liposomes up to around 10% of hydrolysis and, afterwards, it started to increase. The leak-in rate was always lower in partially hydrolysed phospholipids containing liposomes than externally added LPC containing ones. Furthermore, the permeability of cholesterol containing bilayers was also always lower than the bilayers without cholesterol. In conclusion, addition of LPC into liposomal bilayers increases the permeability of bilayer. However, bilayers containing the hydrolysis products of phospholipids, both lyso-phospholipids and free fatty acids, did not show any enhanced permeability up to around 15% hydrolysis. Bilayer permeability is enhanced above 15% hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号