首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Middle Pleistocene Atapuerca-Sima de los Huesos (SH) site in Spain has yielded the largest sample of fossil hominids so far found from a single site and belonging to the same biological population. The SH dental sample includes a total of 452 permanent and deciduous teeth, representing a minimum of 27 individuals. We present a study of the dental size variation in these hominids, based on the analysis of the mandibular permanent dentition: lateral incisors, n=29; canines, n=27; third premolars, n=30; fourth premolars, n=34; first molars, n=38; second molars, n=38. We have obtained the buccolingual diameter and the crown area (measured on occlusal photographs) of these teeth, and used the bootstrap method to assess the amount of variation in the SH sample compared with the variation of a modern human sample from the Museu Antropologico of the Universidade of Coimbra (Portugal). The SH hominids have, in general terms, a dental size variation higher than that of the modern human sample. The analysis is especially conclusive for the canines. Furthermore, we have estimated the degree of sexual dimorphism of the SH sample by obtaining male and female dental subsamples by means of sexing the large sample of SH mandibular specimens. We obtained the index of sexual dimorphism (ISD=male mean/female mean) and the values were compared with those obtained from the sexed modern human sample from Coimbra, and with data found in the literature concerning several recent human populations. In all tooth classes the ISD of the SH hominids was higher than that of modern humans, but the differences were generally modest, except for the canines, thus suggesting that canine size sexual dimorphism in Homo heidelbergensis was probably greater than that of modern humans. Since the approach of sexing fossil specimens has some obvious limitations, these results should be assessed with caution. Additional data from SH and other European Middle Pleistocene sites would be necessary to test this hypothesis.  相似文献   

2.
The study of dental morphology by means of geometric morphometric methods allows for a detailed and quantitative comparison of hominin species that is useful for taxonomic assignment and phylogenetic reconstruction. Upper second and third molars have been studied in a comprehensive sample of Plio- and Pleistocene hominins from African, Asian and European sites in order to complete our analysis of the upper postcanine dentition. Intraspecific variation in these two molars is high, but some interspecific trends can be identified. Both molars exhibit a strong reduction of the distal cusps in recent hominin species, namely European Homo heidelbergensis, Homo neanderthalensis and Homo sapiens, but this reduction shows specific patterns and proportions in the three groups. Second molars tend to show four well developed cusps in earlier hominin species and their morphology is only marginally affected by allometric effects. Third molars can be incipiently reduced in earlier species and they evince a significant allometric component, identified both inter- and intraspecifically. European Middle Pleistocene fossils from Sima de los Huesos (SH) show a very strong reduction of these two molars, even more marked than the reduction observed in Neanderthals and in modern human populations. The highly derived shape of SH molars points to an early acquisition of typical Neanderthal dental traits by pre-Neanderthal populations and to a deviation of this population from mean morphologies of other European Middle Pleistocene groups.  相似文献   

3.
Plasticity of tooth shape in mammals is of great adaptive value for the efficient exploitation of specific feeding niches and is a crucial mechanism for ecological diversification. In this study, we aimed to infer chewing effectiveness from the functional shape of different postcanine teeth within bovids, the most diverse extant group of large herbivorous mammals. We consider the postcanine dentition as a masticatory unit and test for differences related to food biomechanical properties, dietary abrasiveness, and chewing dynamics. We compare functional properties of the postcanine tooth row among species with well‐known dietary strategies by integrating digitalization of high‐resolution occlusal surface 3D‐models of upper postcanine dentitions and quantification of the indentation index (D), a structural parameter representing enamel complexity. We test for differences in the occlusal shape among tooth positions in the postcanine dentition using robust, heteroscedastic tests in a one‐way analysis of variance. Our results show three distinct patterns of enamel complexity along the tooth row: (1) D is more homogeneously distributed among tooth positions; (2) D increases gradually in the mesiodistal axis along the tooth row; and (3) D increases abruptly only at the transition between premolars and molars. We interpreted these patterns as different adaptive configurations of the postcanine tooth row relating to diet. Grass‐ and fruit‐eating bovids show the same abrupt increase in enamel complexity at the transition from premolars to molars. Intermediate feeding and leaf‐browsing species show the same gradual, mesiodistal increase in complexity along the tooth row. The absolute physical dietary resistance (biomechanical properties plus abrasiveness) and its relation to mechanical constraints of the chewing stroke are the likely selective factors leading to convergence of enamel complexity patterns along the tooth row among taxa with different diets. J. Morphol. 275:328–341, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar–molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.  相似文献   

5.
Histological analysis of an ontogenetic series of the dasyurid marsupial,Sminthopsis virginiae, from birt to 60 days old, was undertaken to assess the developmental homologies of the deciduous and successional teeth. This period covers the time from the initiation of all teeth as epithelial buds up until the time of early eruption of some teeth. In addition, two older specimens, aged 81 and 97 days, were examined to provide additional information on the state of differentiation of the unerupted third premolar. In the postcanine dentition, only a single tooth position, dP3, was characterized by the later development of a replacing successional tooth (P3), following developmental pathways identical to those in eutherian mammals. In contrast, the anterior dentition is characterized by the formation of rudimentary, nonerupting deciduous incisors and canines, and by the accelerated development of normal, erupting successional incisors and canines in both jaws. Comparison of relative developmental stages for each tooth position throughout its preeruptive ontogeny suggests thatheterochrony (both developmental acceleration and retardation) has played an important role in the evolutionary history of the dasyurid dentition. Differing aspects of this phenomenon are identified and discussed for the anterior dentition, the anterior two premolars, P3, and the lower molars. Further evidence is presented to corroborate the identification of the anterior two premolars in the adult as dP1 and dP2, based on the relative retardation of their initiation and their lack of successor tooth germs. This developmental heterochrony has probably occurred in all three-premolared marsupials.  相似文献   

6.
‘Symmetrodontans’ are extinct mammals characterized by having a reversed‐triangle molar pattern in which three main cusps define a triangular molar crown. This dental morpholgy has been regarded as being intermediate between the ‘triconodont’ tooth and the tribosphenic pattern characterizing therians; it is a key feature in taxonomy of Mesozoic mammals and one to understand mammalian evolution and palaeobiology. Here we report a new genus and species of ‘symmetrodontan’ mammal, Lactodens sheni, from the Early Cretaceous Jehol Biota, represented by a partial skeleton with dentary and upper and lower teeth with dental morphologies well‐preserved. The new species has a dental formula of three upper incisors, one canine, three premolars, and six molars/three lower incisors, one canine, five premolars and six lower molars, double‐rooted canines, extremely low‐crowned and transversely thin premolars, and acute angled molars. The dental morphologies of molars and peculiar deciduous premolars are similar to those of Spalacolestes from North America. The associated upper and lower dentitions from one individual animal helped to clarify tooth identification of some spalacotheriids represented only by fragmentary material. Phylogenetic analyses indicate a close relationship of the new species to North American spalacolestines and faunal interchanges between Eurasia and North America, thus supporting the notion that small‐bodied spalacotheriids were diverse and had a pan‐Laurasian distribution during the Early Cretaceous. Absence of the Meckelian groove suggests acquisition of the definitive mammalian middle ear in spalacolestines, and deciduous canines and premolars in the slim and extremely long dentary imply a faunivorous diet.  相似文献   

7.
A partial lower jaw is described of an aegialodontid mammal, Kielantherium gobiensis Dashzeveg, 1975, from the Guchin Us beds of Mongolia (?Aptian or ?Albian). The jaw has four molars and four or five premolar loci. A count of P5 M4 is argued to be primitive for the Tribosphenida. McKcnna's interpretation of the postcanine dentition of Peramus as P5 M3 is accepted. It follows that the Peramura could not lead to the Tribosphenida, which apparently arose from unknown 'pantotheres' with not less than nine postcanine teeth.  相似文献   

8.
Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view.  相似文献   

9.
After discussing the existing view points and on the base of author's own studies, the designation of premolars and molars is proposed in the deciduous and permanent dentition of placental mammals, corresponding to the function, form, and structure of the teeth. With the admittance of the molars in the deciduous dentition of mammals, the discrepancy between milk dentition of mammals and humans is eliminated. In this way, the molars of deciduous dentition appeared to be the precursors of premolars and molars of permanent dentition. The separate groups of teeth are differentiated depending on the way of life and kind of consumed food, according to position and function of the teeth in the dentition. Lacerating teeth, premolars are formed in carnivora mammals for tearing off the food, and in case of intensive masticatory function of herbivora and omnivora, very likely, from the same germs of premolars, the molars are formed.  相似文献   

10.
潘雷 《人类学学报》2019,38(3):398-406
在基于计算机断层扫描技术(CT)和虚拟图像处理技术的灵长类牙齿测量学研究中,经常需要分离三维虚拟模型的齿冠和齿根,再进行后续测量工作,如计算机辅助的生物力学分析、釉质厚度测量等。而分离齿冠和齿根这一步骤,目前有多种方法,如,1)根据齿颈线切分齿冠,或2)人工建立基底平面切分齿冠。为了评估这两种不同的处理方式对后续的牙齿测量学上的影响,本文使用三维方法测量了82例化石和现代人类下颌后部牙齿的釉质厚度,包括南方古猿、早期人属、尼安德特人和现代人。使用配对t检验对比发现,两种方法得到的釉质厚度数值上没有显著差别,但随后进行的种间比较发现,使用基底平面切分齿冠的方法比较费时,更依赖于测量者的人工操作,并且可能弱化了物种间前臼齿绝对釉质厚度的差异,造成系统误差。其原因是对于前臼齿和前部牙齿等齿颈线形状不规则的标本,基底平面难以建立或误差较大。在未来对釉质厚度的种间差异的研究中,特别对齿颈线形状不规则的标本(如人类前部牙齿及猩猩、黑猩猩的牙齿等),本文推荐使用齿颈线分离齿冠和齿根,测量和计算齿颈线之上的釉质厚度。釉质厚度有一定的分类学、功能形态学和系统发育学意义。本文积累了一批可供未来对比研究的原始数据,并且发现尼安德特人前臼齿的相对釉质厚度显著小于现代人,这与前人利用臼齿、犬齿所做的对比研究结果相同,支持了尼安德特人拥有较薄的相对釉质厚度这一观点。  相似文献   

11.
12.
As the most common and best preserved remains in the fossil record, teeth are central to our understanding of evolution. However, many evolutionary analyses based on dental traits overlook the constraints that limit dental evolution. These constraints are diverse, ranging from developmental interactions between the individual elements of a homologous series (the whole dentition) to functional constraints related to occlusion. This study evaluates morphological integration in the hominin dentition and its effect on dental evolution in an extensive sample of Plio- and Pleistocene hominin teeth using geometric morphometrics and phylogenetic comparative methods. Results reveal that premolars and molars display significant levels of covariation; that integration is stronger in the mandibular dentition than in the maxillary dentition; and that antagonist teeth, especially first molars, are strongly integrated. Results also show an association of morphological integration and evolution. Stasis is observed in elements with strong functional and/or developmental interactions, namely in first molars. Alternatively, directional evolution (and weaker integration) occurs in the elements with marginal roles in occlusion and mastication, probably in response to other direct or indirect selective pressures. This study points to the need to reevaluate hypotheses about hominin evolution based on dental characters, given the complex scenario in which teeth evolve.  相似文献   

13.
The dentition of Cambaytherium was investigated in terms of dental wear, tooth replacement and enamel microstructure. The postcanine tooth row shows a significant wear gradient, with flattened premolars and anterior molars at a time when the last molars are only little worn. This wear gradient, which is more intensive in Cambaytherium thewissi than in Cambaytherium gracilis, and the resulting flattened occlusal surfaces, may indicate a preference for a durophagous diet. The tooth replacement (known only in C. thewissi) shows an early eruption of the permanent premolars. They are in function before the third molars are fully erupted. During the dominant phase I of the chewing cycle the jaw movement is very steep, almost orthal, with a slight mesiolingual direction and changes into a horizontal movement during phase II. The enamel microstructure shows Hunter-Schreger-bands (HSB) in the inner zone of the enamel. In some teeth the transverse orientation of the HSB is modified into a zig-zag pattern, possibly an additional indicator of a durophagous diet.  相似文献   

14.
The study of modularity can provide a foundation for integrating development into studies of phenotypic evolution. The dentition is an ideal phenotype for this as it is developmentally relatively simple, adaptively highly significant, and evolutionarily tractable through the fossil record. Here, we use phenotypic variation in the dentition to test a hypothesis about genetic modularity. Quantitative genetic analysis of size variation in the baboon dentition indicates a genetic modular framework corresponding to tooth type categories. We analyzed covariation within the dentitions of six species of Old World monkeys (OWMs) to assess the macroevolutionary extent of this framework: first by estimating variance–covariance matrices of linear tooth size, and second by performing a geometric morphometric (GM) analysis of tooth row shape. For both size and shape, we observe across OWMs a framework of anterior and postcanine modules, as well as submodularity between the molars and premolars. Our results of modularity by tooth type suggest that adult variation in the OWM dentition is influenced by early developmental processes such as odontogenesis and jaw patterning. This study presents a comparison of genotypic modules to phenotypic modules, which can be used to better understand their action across evolutionary time scales.  相似文献   

15.
The postcanine dentition of three species of colobus monkeys (Colobus polykomos polykomos, Procolobus badius badius and Procolobus verus) is compared metrically for three characters: interdental relations, sexual dimorphism and interspecific relations. Interdental relations reveal that the postcanine teeth represent a single morphogenetic field, which supports Butler's concept on the nature of the differentiation and variability of mammalian dentition. However, comparisons of the coefficients of variation show that interdental differences are not significant, except in a few cases. Also, sex differences in variability are not significant. However, comparisons of the means reveal highly significant sex differences, particularly in the dimensions of the first lower premolar in all three species. The analysis of interspecific relations of the postcanine dentition supports the current idea about the systematics of colobus monkeys. The findings are discussed with comparative data from other cercopithecoids and hominoids.  相似文献   

16.
This investigation of modern human mandibular premolar root variation tests the hypothesis that population-specific mandibular single-rooted premolar root size can predict a predisposition to root morphological complexity. Mandibular postcanines were examined and quantified from dental radiographs in a globally spread sample of 1,615 modern humans. Multirooted premolars and a fused molar root phenotype were investigated as probes into greater than, and less than, the normative root number. Twelve questions were addressed concerning root structure of mandibular premolars and second molars. A direct correlation was found between single-rooted mandibular premolar size and the predisposition to multirootedness. This correlation infers the following: 1) that postcanine primordia size during root formation predisposes to the development of more, or less, than the normative postcanine root number; and 2) that the epigenetic effect of tooth primordium size per se influences the induction of interradicular processes, which divides the root during its development. This simple developmental model helps explain the following observations: 1) population-specific variation in postcanine root number; 2) sexual dimorphism for multirooted mandibular premolar prevalence; 3) why microdont teeth are single-rooted; 4) the hierarchy of developmental canalization of interradicular processes; 5) megadont-hominin to late-hominin mandibular premolar root number transition; and 6) the fluctuation of mandibular premolar root number in primate evolutionary history.  相似文献   

17.
《Comptes Rendus Palevol》2008,7(8):629-643
Paleoanthropologists have hypothesized that, during the evolution of increased carnivory in our lineage, hominins transitioned through a scavenging niche created by certain carnivoran taxa (especially sabertooths) that may have lacked the morphology necessary to utilize all parts of carcasses, thus leaving an open niche of high-quality scavengable remains. In this article, we examine the postcanine dentition of modern and fossil carnivorans using quantifications of occlusal radii-of-curvature (ROC) and correlate this morphology with feeding behavior to deduce the carcass-processing capabilities of the Plio-Pleistocene carnivores of South Africa. ROC data do a good job of separating taxa by dietary category, revealing possible differences in the carcass-processing abilities of fossil and modern members of some extant species, and confirming that Chasmaporthetes was probably a hypercarnivore and not a durophage like the modern hyenas. Contrary to previous hypotheses, sabertooth felids do not appear to have been more hypercarnivorous than modern felids based on these data.  相似文献   

18.
Four species of Indriidae are extant in Madagascar. We have studied large samples of each of these to characterize dental and cranial variation, and to estimate the degree of sexual dimorphism in the dentition and cranium. Two dental fields are apparent, characterized by reduced variability: (1) a canine field centered on the upper canine and occluding caniniform lower premolar, and (2) a cheek tooth field centered on the second molars. No consistent pattern of sexual dimorphism was found in dental or cranial dimensions, and we conclude that none of the four species is sexually dimorphic. This lack of dental and cranial dimorphism is unusual in primates, and probably reflects the relatively limited aggressive behavior and the lack of male dominance in Indriidae.  相似文献   

19.
A recently recovered specimen of Mesotheriinae (Mesotheriidae, Notoungulata) from the late Miocene-early Pliocene of La Rioja Province (Argentina), CRILAR Pv 433, corresponds to an individual with three upper premolars, which appears to be an “anomaly” among mesotheriines. The detailed study of this specimen, however, brings up an old controversy on the interpretation of different mesotheriine specimens with three upper or two lower premolars. After being described as different taxa, these were later considered to be juvenile representatives of other known species. The three upper or two lower teeth were interpreted as the milk molars DP2–4 and dp3–4, respectively, which would be replaced in adult life by two upper (P3–4) and one lower (p4) permanent premolars. The new material leads us to set up a different interpretation. In our opinion, all these specimens actually preserve the permanent dentition, corresponding to different ontogenetic stages of more or less young individuals. This consideration implies the necessity of a deep systematic revision of the whole subfamily, keeping in mind this new point of view and the ontogenetic variation within a species. Therefore, the presence of P2/p3 is not enough to define a different taxon at this moment. Pending this taxonomic revision, the dental morphology of CRILAR Pv 433 resembles both Typotheriopsis (e.g., upper premolars with one labial sulcus) and Pseudotypotherium (e.g., P4 with lingual groove, wide median lobe of M3) as these two late Miocene genera are currently characterized. Furthermore, P2/p3 could be expelled soon in the lifetime of individuals, and even the presence of P2/p3 could be a variable character within the same taxon; if so, this might reflect an evolutionary trend to the loss of a dental element within mesotheriines, but the revision of a large sample is necessary to support or reject these hypotheses.  相似文献   

20.
Physical anthropologists often use nonmetric dental traits to trace the movement of human populations, but similar analysis of the teeth of nonhuman primates or the deciduous teeth is rare. Because nonmetric dental characteristics are manifestations of genetic differences among groups, they vary among geographically distant members of the same species and subspecies. We use 28 nonmetric dental traits in the deciduous molars to compare genetically and geographically distinct groups of extant African apes (Gorilla and Pan). Previous researchers have studied these traits in the adult or juvenile teeth of great apes and humans, and we score our observations according to established standards for hominins. We observe marked differences in trait frequencies between Gorilla and Pan, Pan troglodytes and P. paniscus, and two P. troglodytes subspecies but we find no significant differences between geographically isolated groups within the subspecies. Trait frequencies differ from those found in previous studies that contained fewer individuals. We find that the deciduous molars show similar variation to adult premolars and molars within Pan and Gorilla. This suggests that the deciduous dentition of these and other apes may contain diagnostic traits that are not currently in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号