首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

3.
Research in large, long-term tropical forest plots   总被引:2,自引:0,他引:2  
The past 15 years has seen the creation oflarge (>/16 ha) permanent inventory plots in each of the major tropical forest formations of the world. Currently, six such plots have been fully mapped, and five more and under way. A standardized methodology is used at all sites - a complete census of all trees and saplings down to 1 cm in diameter - thus assuring strict comparability between sites and allowing the development of general models for the dynamics of tropical forests. The inventories aim to gather demographic information on individual tree species, to provide long-term information on forest composition so that future changes can be detected, to estimate the economic value of forest resources, to generate models of sustainable extraction, and to provide data on underused native species for use in reforestation or plantation forestry. The plots also provide data from undisturbed forest to serve as a control for anthropological and management studies of harvested forests.  相似文献   

4.
Low stocks of coarse woody debris in a southwest Amazonian forest   总被引:1,自引:0,他引:1  
The stocks and dynamics of coarse woody debris (CWD) are significant components of the carbon cycle within tropical forests. However, to date, there have been no reports of CWD stocks and fluxes from the approximately 1.3 million km2 of lowland western Amazonian forests. Here, we present estimates of CWD stocks and annual CWD inputs from forests in southern Peru. Total stocks were low compared to other tropical forest sites, whether estimated by line-intercept sampling (24.4 ± 5.3 Mg ha−1) or by complete inventories within 11 permanent plots (17.7 ± 2.4 Mg ha−1). However, annual inputs, estimated from long-term data on tree mortality rates in the same plots, were similar to other studies (3.8 ± 0.2 or 2.9 ± 0.2 Mg ha−1 year−1, depending on the equation used to estimate biomass). Assuming the CWD pool is at steady state, the turnover time of coarse woody debris is low (4.7 ± 2.6 or 6.1 ± 2.6 years). These results indicate that these sites have not experienced a recent, large-scale disturbance event and emphasise the distinctive, rapid nature of carbon cycling in these western Amazonian forests.  相似文献   

5.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Abstract. The effects of selective logging on tree diversity, changes in tree species composition and plant functional types were studied with the use of seven permanent plots in virgin and in logged forest. All plots were located in a lowland dipterocarp rain forest in East Kalimantan on the island of Borneo. Just after logging and during the following 20 yr tree diversity measured as Fishers’α was not significantly affected in logged forest plots. Temporal shifts in tree species composition were analysed with Principal Component Analysis (PCA). Logged forest plots had much larger changes over time than virgin forest plots. In the smallest diameter class, some logged forest plots showed a distinct trajectory in PCA space compared to virgin forest plots, while in larger diameter classes movement of logged plots in PCA space was random. This suggests that there is no predetermined community to which logged forest plots tend to shift when recovering from logging. We found a significant negative correlation between diameter increments and the species‐specific wood densities of tree species. Species‐specific wood density and potential tree height were used to assign species to five PFTs. As expected, logging increased the fraction of softwood stems in small diameter classes. In the largest diameter classes (≥ 50 cm DBH) a strong decrease of softwood emergent stems was found in logged forest plots. After more than 20 yr no recruitment was found of softwood emergent stems in selectively logged forest.  相似文献   

7.
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.  相似文献   

8.
Human impacts on tropical forest dynamics   总被引:2,自引:0,他引:2  
People living near or in tropical forest ecosystems have traditionally extracted forest products, i.e. timber, food and medicinal plants for their livelihood. Such practice does not create too much disturbance when the population is still sparse, and the product is used only for their own needs. When population pressure becomes greater, and when the motive of extraction is profit, then the disturbance become serious and created environmental problems. Major exploitation of the Indonesian rain forest for timber began in the 1960s and is continuing today. The lowland rain forests of Sumatra and Kalimantan have been particularly logged. Exploitation has often been destructive because Forest Department rules have been widely ignored. Moreover, once roads have given access to formerly inaccessible areas, farmers have often moved in after the timber companies and then cleared the relict, regenerating forest for either permanent or shifting cultivation. The traditional shifting cultivations have been practised for years, producing millions of ha of impoverished secondary types of forest, degraded lands and alang-alang (Imperata cylindrica) grasslands. Forests have also been lost through conversion of land to plantation agriculture and transmigration programmes, mining, construction roads and railways and also natural disturbances, such as drought and fire. This paper will discuss the human impact upon tropical forest dynamics in general, with examples from Indonesian and other Southeast Asia countries' tropical forests.  相似文献   

9.
朱华 《植物生态学报》2006,30(1):184-186
该文针对“西双版纳热带山地雨林的植物多样性研究”论文中存在的一些问题进行了讨论。原文所依据的6个调查样地, 从其分布海拔、生境、群落的生态外貌特征、植物区系组成及单位面积植物种数的统计上反映出它们并非都属于同样的植被类型,即原文所称的热带山地雨林,而可能分别属于《云南植被》中所应用的热带季节雨林的次生林群落(样地I和II)、季风常绿阔叶林群落(样地V和VI)及类似于苔藓常绿阔叶林(样地III和IV)的群落类型。由于这些样地代表了不同的植被类型, 导致在对这些样地的植物多样性特征的比较上出现较大差异。对原文在资料分析和与其它森林群落植物多样性的比较上存在的一些问题也作了讨论。原文的研究结果显示了西双版纳不同海拔高度上森林植物群落的物种多样性特征,但并不能全部运用于该地区的热带山地雨林这一特定植被类型。  相似文献   

10.
In tropical and subtropical forests there is limited information about how to integrate sustainable timber management with the conservation of biodiversity. We examined the effect of selective logging on the bird community to help develop management guidelines to assure the conservation of biodiversity in forests managed for timber production. The study design consisted of control and harvested plots in piedmont and cloud forests of the subtropical montane forests of the Andes in northwestern Argentina. We conducted bird point-count surveys combined with distance estimation. Breeding season bird community composition was more similar between control and logged forest in both the cloud forest and piedmont, than between the two elevations, probably because Neotropical bird communities change dramatically along elevational gradients. Within each elevation zone, community composition changed significantly between harvested and control forests. Both between and within each elevation zone no significant differences in bird density were detected. Similarly, when we analyzed bird density according to diet guilds no general pattern could be extracted. However, we found a significantly greater density of cavity nesters and lower of non-cavity nesters in control plots, probably because most trees that can develop suitable cavities were extracted in logged plots and these plots had a greater structural diversity enabling more nesting resources. Grouping species according to their nesting habitat requirements has rarely been used in the neotropics and other tropical and subtropical forests, but focusing management attention on cavity nesters might address the most sensitive portion of the avian community as well as other species dependent on trees likely to hold cavities.  相似文献   

11.
Recent evidence suggests that liana abundance and biomass are increasing in Neotropical forests, representing a major structural change to tropical ecosystems. Explanations for these increases, however, remain largely untested. Over an 8‐yr period (1999–2007), we censused lianas in nine, 24 × 36 m permanent plots in old‐growth and selectively logged forest at La Selva Biological Station, Costa Rica to test whether: (1) liana abundance and basal area are increasing in this forest; (2) the increase is being driven by increased recruitment, decreased mortality, or both; and (3) long‐distance clonal colonization explains the increase in liana abundance and basal area. We defined long‐distance clonal colonization as lianas that entered and rooted in the plots as vegetative propagules of stems that originated from outside or above the plot, and were present in 2007, but not in 1999 or 2002. Our hypotheses were supported in the old‐growth forest: mean liana abundance and BA (≥1 cm diameter) increased 15 and 20 percent, respectively, and clonal colonization from outside of the plots contributed 19 and 60 percent (respectively) to these increases. Lianas colonized clonally by falling vertically from the forest canopy above or growing horizontally along the forest floor and re‐rooting—common forms of colonization for many liana species. In the selectively logged forest, liana abundance and BA did not change, and thus the pattern of increasing lianas may be restricted to old‐growth forests. In summary, our data support the hypothesis that lianas are increasing in old‐growth forests, and that long‐distance clonal colonization is a major contributor.  相似文献   

12.
We compared bird diversity and frequency in selection logged and unlogged forest to determine the effects of recent selection logging on avian biodiversity in a subtropical, moist evergreen forest. We used a combination of mist netting and fixed-radius point counts to assess bird communities in February and March 1993 in northwestern Belize. Vegetation structure and composition was similar in logged and unlogged forest. The 66 most common species occurred with statistically similar frequency in logged and unlogged forest although 13 species were two times more frequent in intact forest. Numbers of total bird species were similar between logging gaps and the logged forest matrix, and between the logged forest matrix and unlogged forests. A comparison of numbers of species in 26 guilds based on migration strategy, diet, foraging substrate, and height strata also showed them to be similar regardless of logging history. Our results differed from previous studies that reported lower bird species richness and abundance of individual species in logged tropical forests than in unlogged forest. The differences might be explained by the lower logging intensity and/or greater levels of natural disturbance in our study area compared to previous studies.  相似文献   

13.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

14.
The tropical forests of the Congo Basin constitute biodiversity refuges that still hold large numbers of species, including endemic and endangered vertebrates. Along with several key species, the critically endangered western lowland gorilla (WLG) potentially contributes to forest dynamics through seed dispersal. Considering the extensive influence of timber harvesting on tropical forest ecosystems, the survival of gorilla populations in logged forests might prove critical for forest ecosystem conservation. We estimated WLG density, through a nest count survey, in a forest in southeast Gabon that has been logged for 25 years. Nesting behavior and habitat use were described and we applied generalized linear models to identify the factors that influence gorilla day and night habitat use. The estimated density of weaned gorillas, 1.5 gorillas km?2, is comparable with estimates from some protected areas and other sustainably managed sites within their range. Habitat type had the greatest influence on nest site distribution. We observed a preference for nesting in open terra firma forest, and open habitats in general, which supports the findings of previous studies. Habitat use during the day was strongly influenced by habitat type and human activities, and to a lesser degree by functional and non-functional roads, and rivers. Our results support the suggestion that logged forests are suitable habitats for WLG if hunting and poaching are controlled. We recommend collaborations between timber operators and scientists to improve the conservation potential of tropical forests and enhance the wildlife-management aspects of logging practices.  相似文献   

15.
Wagner  Thomas 《Plant Ecology》2001,153(1-2):169-178
Arthropods were collected by insecticidal tree fogging on the understorey tree species Rinorea beniensis Engler (Violaceae) in Budongo Forest, a seasonal rain forest in Uganda. Eight trees were fogged in adjacent plots of primary, selectively logged and swamp forest during the wet season and again in the dry season. In all forest types, Psocoptera, parasitoid Hymenoptera, and especially Formicidae and Auchenorrhyncha were more abundant during the dry season, while Ensifera, Heteroptera, Lepidoptera, Diptera, and Coleoptera were more abundant during the wet season. Seasonal change in arthropod composition was very low in the swamp forest located near a stream, where permanent water supply is crucial for the development of the distinct swamp vegetation, with comparatively constant microclimatic conditions all over the year. Seasonal change increased in the primary forest, and shows most significant changes of athropod abundance between dry and wet season in the selectively logged forest which also had the highest heterogeneity in forest structures. Especially small and soft bodied arthropods probably accumulate along a humidity gradient in the dense canopies of Rinorea during the dry season, when the forest floor outside the swamp forest is dry. This effect, which is also strongest in the selectively logged forest, leads to a much higher density of canopy dwelling arthropods during the dry season.  相似文献   

16.
The carbon storage and conservation value of old-growth tropical forests is clear, but the value of logged forest is less certain. Here we analyse >100,000 observations of individuals from 11 taxonomic groups and >2,500 species, covering up to 19?years of post-logging regeneration, and quantify the impacts of logging on carbon storage and biodiversity within lowland dipterocarp forests of Sabah, Borneo. We estimate that forests lost ca. 53% of above-ground biomass as a result of logging but despite this high level of degradation, logged forest retained considerable conservation value: floral species richness was higher in logged forest than in primary forest and whilst faunal species richness was typically lower in logged forest, in most cases the difference between habitats was no greater than ca. 10%. Moreover, in most studies >90% of species recorded in primary forest were also present in logged forest, including species of conservation concern. During recovery, logged forest accumulated carbon at five times the rate of natural forest (1.4 and 0.28?Mg?C?ha?1?year?1, respectively). We conclude that allowing the continued regeneration of extensive areas of Borneo??s forest that have already been logged, and are at risk of conversion to other land uses, would provide a significant carbon store that is likely to increase over time. Protecting intact forest is critical for biodiversity conservation and climate change mitigation, but the contribution of logged forest to these twin goals should not be overlooked.  相似文献   

17.
Silvicultural intensification for tropical forest conservation   总被引:2,自引:2,他引:0  
Minimizing the deleterious environmental impacts of logging and other silvicultural treatments is the primary conservation goal in tropical forests managed for timber production. While it is always environmentally beneficial to minimize unnecessary damage, more intensive silviculture should not be discouraged in tropical forests in which regeneration and growth of commercially valuable timber species requires such treatments. Failing to regenerate commercial species may render forests more susceptible to conversion to other, more lucrative land uses. Increasing the intensity of silviculture may also decrease the total area of forest exploited for timber, thereby reducing the impacts of over-hunting, timber theft, wildfires, colonization, and conversion, which are facilitated by the increased accessibility of logged areas.  相似文献   

18.
Tropical dry forests in New Caledonia   总被引:1,自引:1,他引:0  
Tropical dry forest is the most endangered major vegetation type in the New Caledonia biodiversity hotspot. Vegetation surveys following a transect method used by Gentry were undertaken in two tropical dry forest sites, Ouen-Toro and Pindai, in order to compare species richness, floristic composition, and structure. Pindai contained significantly higher species richness than Ouen-Toro, although there was little difference in forest structure. Tropical dry forest sites in New Caledonia were compared to seven other biodiversity hotspots with tropical dry forest where Gentry's transect method was employed. New Caledonia and other tropical dry forests on islands contain significantly lower species richness than mainland tropical dry forests in biodiversity hotspots. However, New Caledonia contained the highest number of threatened species based on IUCN global conservation categories. Tropical dry forest in New Caledonia appears to be the world's most endangered tropical dry forest based on the extent of forest, number of reserves, and threatened species. Management of tropical dry forests on private and community lands is absolutely imperative to the long-term persistence of this ecosystem.  相似文献   

19.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

20.
This paper is intended to provide a brief review of the tropical seasonal forest, one type of the tropical moist forests in monsoon Asia. It will also focus on and summarise issues of current concern in relation to their depletion and global environmental issues. Tropical moist forests occur in the rainy tropical and monsoon tropical climate types. The tropical moist evergreen forest or the tropical rain forest, which account for two-thirds of the tropical moist forests are rich in biodiversity and contain valuable tropical hardwood. The tropical moist deciduous forest or the tropical seasonal forest which lie along the fringes of tropical rain forest, are less complex than the tropical rain forest and have more distinct wet and dry periods. Broadleaved deciduous trees of the genera Tectona, Shorea, and Dipterocarpus are predominantly in this forest type. Currently estimates have found that more than 17 million hectares of forest mainly tropical moist forests are being lost each year. There is a widespread recognition that agriculture and the burning of tropical moist forests contribute to global warming but to a much lesser extent than the combustion of fossil fuels and industrial activities in the developed world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号