首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
The classic obligate pollination–seed consumption mutualism between yuccas and yucca moths has been thought to be mediated by chemical cues, but empirical data on pollinator attraction to host floral volatiles in this association have been lacking. Here we show that the scent from virgin flowers of the host Yucca glauca is sufficient to attract its obligate pollinator Tegeticula yuccasella in Y‐tube olfactometer tests. Interestingly, both sexes of moths were attracted to the scent stimulus. Because yucca moths mate inside host flowers, the attraction of both females and males to host floral volatiles is likely to increase encounter rates. In a second test, female moths did not discriminate between virgin and hand‐pollinated flowers, indicating no post‐pollination change in scent production by the host that would lead to a reduction in pollinator attraction and thereby limit exploitation of the available seeds in host flowers. However, other mechanisms that could stabilise the mutualism between T. yuccasella and its yucca hosts have already been documented, i.e. selective abortion of heavily infested flowers, and a female‐derived host‐marking pheromone. Headspace collection and GC–MS were used to identify the blend of floral volatiles emitted by Y. glauca, which was found to be very similar to those of two other allopatric capsular‐fruited species, Y. elata and Y. filamentosa, revealing strong conservation of this trait within Yucca section Chaenocarpa.  相似文献   

2.
The color and patterns of animal‐pollinated flowers are known to have effects on pollinator attraction. In this study, the relative importance of flower color and color contrast patterns on pollinator attraction was examined in two pollinator groups, swallowtail butterflies and hawkmoths using two Hemerocallis species; butterfly‐pollinated H. fulva and hawkmoth‐pollinated H. citrina, having reddish and yellowish flowers in human vision, respectively. Flowers of both species have UV bullseye patterns, composed of UV‐absorbing centers and UV‐reflecting peripheries, known to function as a typical nectar guide, but UV reflectance was significantly more intense in the peripheries of H. citrina flowers than in those of H. fulva flowers. Comparison based on the visual systems of butterflies and hawkmoths showed that the color contrast of the bullseye pattern in H. citrina was more intense than that in H. fulva. To evaluate the relative importance of flower color and the color contrast of bullseye pattern on pollinator attraction, we performed a series of observations using experimental arrays consisting of Hemerocallis species and their hybrids. As a result, swallowtail butterflies and crepuscular/nocturnal hawkmoths showed contrasting preferences for flower color and patterns: butterflies preferred H. fulva‐like colored flower whereas the preference of hawkmoths was affected by the color contrast of the bullseye pattern rather than flower color. Both crepuscular and nocturnal hawkmoths consistently preferred flowers with stronger contrast of the UV bullseye pattern, whereas the preference of hawkmoths for flower color was incoherent. Our finding suggests that hawkmoths can use UV‐absorbing/reflecting bullseye patterns for foraging under light‐limited environments and that the intensified bullseye contrast of H. citrina evolved as an adaptation to hawkmoths. Our results also showed the difference of visual systems between pollinators, which may have promoted floral divergence.  相似文献   

3.
Since the 1970s it has been known that the nursery pollinator Hadena bicruris is attracted to the flowers of its most important host plant, Silene latifolia, by their scent. Here we identified important compounds for attraction of this noctuid moth. Gas chromatographic and electroantennographic methods were used to detect compounds eliciting signals in the antennae of the moth. Electrophysiologically active compounds were tested in wind-tunnel bioassays to foraging na?ve moths, and the attractivity of these compounds was compared with that to the natural scent of whole S. latifolia flowers. The antennae of moths detected substances of several classes. Phenylacetaldehyde elicited the strongest signals in the antennae, but lilac aldehydes were the most attractive compounds in wind-tunnel bioassays and attracted 90% of the moths tested, as did the scent of single flowers. Our results show that the most common and abundant floral scent compounds in S. latifolia, lilac aldehydes, attracted most of the moths tested, indicating a specific adaptation of H. bicruris to its host plant.  相似文献   

4.
Many insect-pollinated plants use floral scent signals to attract and guide the effective pollinators, and temporal patterns of their floral scent emission may be tuned to respond to the pollinator's activity and pollination status. In the intimate nursery pollination mutualism between monoecious Glochidion trees (Phyllanthaceae) and Epicephala moths (Gracillariidae), floral scent signals mediate species-specific interactions and influence the moth's efficient pollen-collecting and pollen-depositing behaviors on male and female flowers, respectively. We tested the hypotheses that both sexes of flowers of Epicephala-pollinated Glochidion rubrum exhibit a diel pattern of scent emission matching the activity period of the nocturnally active pollinator, and that female flowers change the chemical signal after pollination to reduce further visits and oviposition by the pollinator. We investigated the diel change of floral scent emissions during two consecutive days and the influence of pollination on the floral scent by conducting hand-pollinations in the field. The total scent emission of male and female flowers was higher at night than in the day, which would be expected from the nocturnal visitations of Epicephala moths. Some compounds exhibited a clear nocturnal emission rhythm. Hand-pollination experiments revealed that emission of two compounds, nerolidol and eugenol, drastically decreased in pollinated flowers, suggesting that these compounds may function as key attractants for the pollinator; however, the total scent emission of the female flower was not influenced by hand-pollination. The pattern of the floral scent emission of G. rubrum may be optimized to attract nocturnal pollinators and reduce oviposition.  相似文献   

5.
Floral color change in diverse plants has been thought to be a visual signal reflecting changes in floral rewards, promoting pollinator foraging efficiency as well as plant reproductive success. It remains unclear whether olfactory signals co-vary with floral color change. We investigated the production rhythms of floral scent and nectar associated with floral color change in Lonicera japonica. The flowers generally last 2–3 days. They are white on opening at night (N1) and become light yellow the following day (D1), yellow on the second night (N2), and golden on the second day of flowering (D2). Our measurements in the four stages indicated that nectar production decreased significantly from N1 and D1 to N2 and D2, tracking the floral color change. A total of 34 compounds were detected in floral scent and total scent emission was significantly higher in N2 than in the other three stages. The scent emission of three major compounds, Linalool, cis-3-Hexenyl tiglate, and Germacrene D was also significantly higher in N2, but the relative content of Linalool decreased gradually, cis-3-Hexenyl tiglate increased gradually, and the relative content of Germacrene D did not differ among the four measured stages. Greater scent emission by night than by day suggested a strong olfactory signal to attract nocturnal hawkmoths, the effective pollinators. However, floral scent rhythms in the four stages did not match the color change and nectar secretion, suggesting that floral color (visual) and scent (olfactory) in this species may play different roles in attracting or filtering various visitors.  相似文献   

6.
Variation in floral phenotype (color, depth, nectar) suggests incipient specialization for bee or hawkmoth pollination across the geographic distribution of Echinopsis ancistrophora , with flower depth ranging from 4.5 to 24 cm. We used chemical and behavioral analyses to test whether fragrance has evolved in concert with morphology in these Andean cacti. Floral scent (145 total compounds) was collected using dynamic headspace methods and analyzed with gas chromatography–mass spectrometry, revealing subspecies-specific odors dominated by sesquiterpenes in E. ssp. ancistrophora and arachnacantha and fatty acid derivatives or aromatics in E. ssp. cardenasiana and pojoensis . Compounds indicative of sphingophily were not consistently found in moth-pollinated plants, and total scent emissions were significantly lower in populations with nocturnal anthesis. In wind tunnel assays, Manduca sexta moths were attracted to scent of ssp. ancistrophora from both bee and hawkmoth-pollinated populations, but not to scent of ssp . cardenasiana . However, hawkmoths were most attracted to the methyl benzoate-dominated scent of a distant relative, Echinopsis mirabilis . Thus, hawkmoth-pollinated descendants of the E. ancistrophora lineage may be phylogenetically constrained to emit weak, sesquiterpene-dominated fragrances that are not optimally attractive to hawkmoths, or floral scent may be under stronger selection by destructive flower visitors.  相似文献   

7.
Pollinators visit flowers for rewards and should therefore have a preference for floral signals that indicate reward status, so called ‘honest signals’. We investigated honest signalling in Brassica rapa L. and its relevance for the attraction of a generalised pollinator, the bumble bee Bombus terrestris (L.). We found a positive association between reward amount (nectar sugar and pollen) and the floral scent compound phenylacetaldehyde. Bumble bees developed a preference for phenylacetaldehyde over other scent compounds after foraging on B. rapa. When foraging on artificial flowers scented with synthetic volatiles, bumble bees developed a preference for those specific compounds that honestly indicated reward status. These results show that the honesty of floral signals can play a key role in their attractiveness to pollinators. In plants, a genetic constraint, resource limitation in reward and signal production, and sanctions against cheaters may contribute to the evolution and maintenance of honest signalling.  相似文献   

8.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

9.
The daylily (Hemerocallis fulva) and nightlily (H. citrina) are typical examples of a butterfly-pollination system and a hawkmoth-pollination system, respectively. H. fulva has diurnal, reddish or orange-colored flowers and is mainly pollinated by diurnal swallowtail butterflies. H. citrina has nocturnal, yellowish flowers with a sweet fragrance and is pollinated by nocturnal hawkmoths. We evaluated the relative roles of flower color and scent on the evolutionary shift from a diurnally flowering ancestor to H. citrina. We conducted a series of experiments that mimic situations in which mutants differing in either flower color, floral scent or both appeared in a diurnally flowering population. An experimental array of 6 × 6 potted plants, mixed with 24 plants of H. fulva and 12 plants of either F1 or F2 hybrids, were placed in the field, and visitations of swallowtail butterflies and nocturnal hawkmoths were recorded with camcorders. Swallowtail butterflies preferentially visited reddish or orange-colored flowers and hawkmoths preferentially visited yellowish flowers. Neither swallowtail butterflies nor nocturnal hawkmoths showed significant preferences for overall scent emission. Our results suggest that mutations in flower color would be more relevant to the adaptive shift from a diurnally flowering ancestor to H. citrina than that in floral scent.  相似文献   

10.
To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent.  相似文献   

11.
In sapromyiophilous plants, up to date, long range attraction of fly pollinators has been thoroughly investigated and attributed to “fetid” floral compounds, while the “sweet” floral scent fraction has not been specifically investigated and its role has received little attention. The aim of the present study was to verify if terpenoids, which are the main compounds of the floral bouquet of Caralluma europaea, play a role in the attraction of its pollinator Musca domestica. Terpinolene, α-terpinene and linalool, described as the three main volatiles of the flowers of C. europaea, were evaluated in electrophysiological investigations and blends of these compounds as well as the whole fresh flowers were used in behavioural assays. Antennae of housefly adults showed positive dose-dependent responses to all the chemicals tested. Houseflies were attracted by the odour of the fresh flowers and by the reconstructed terpenoid blend at the dose of 100 μg. At the dose of 10 μg, the blend did not produce any attraction. The results of the present study support the hypothesis that terpinolene, α-terpinene and linalool emitted by C. europaea flowers are involved in pollinator attraction and demonstrate the importance of the “sweet” scent in this sapromyiophilous species.  相似文献   

12.
Flowers that mimic carrion or faeces exhibit unusual traits, the evolution and functional significance of which remain poorly understood. Odour is an important pollinator attractant, but visual traits and interactions between visual and scent traits have seldom been considered. We studied pollination of the “carrion flowers” of Ceropegia mixta [= Orbea variegata], analysed floral traits and used manipulative experiments to explore the contributions of visual and scent traits to pollinator attraction. Flowers were pollinated primarily by Musca domestica (Muscidae), with lesser contributions by Calliphoridae and Sarcophagidae flies. The floral odour (analysed using gas chromatography–mass spectrometry) was dominated by oligosulphides and phenol. Comparison of floral and abiotic background colours (analysed using reflectance spectrometry) using a fly colour vision model suggested that flowers would be chromatically indistinguishable from the background. Comparison of fly arrival rates at concealed (but still scented) versus exposed flowers showed that flies can locate flowers without visual cues, but visitation was higher when the flowers were visible. Experiments using model flowers with odour supplied by real flowers (to explore the significance of dark flowers and dark spots on a pale background, which both occur frequently in flowers that mimic carrion or faeces) showed that scented black flowers attracted significantly more flies than similarly scented human-yellow flowers, while the presence or size of black spots on the corolla had no effect on the attraction of flies. Our results suggest that there is a visual component to fly attraction, but some traits, such as the mottled patterning, may not have evolved to enhance pollinator attraction.  相似文献   

13.
Zoophilous flowers often transmit olfactory signals to attract pollinators. In plants with unisexual flowers, such signals are usually similar between the sexes because attraction of the same animal to both male and female flowers is essential for conspecific pollen transfer. Here, we present a remarkable example of sexual dimorphism in floral signal observed in reproductively highly specialized clades of the tribe Phyllantheae (Phyllanthaceae). These plants are pollinated by species-specific, seed-parasitic Epicephala moths (Gracillariidae) that actively collect pollen from male flowers and pollinate the female flowers in which they oviposit; by doing so, they ensure seeds for their offspring. We found that Epicephala-pollinated Phyllanthaceae plants consistently exhibit major qualitative differences in scent between male and female flowers, often involving compounds derived from different biosynthetic pathways. In a choice test, mated female Epicephala moths preferred the scent of male flowers over that of female flowers, suggesting that male floral scent elicits pollen-collecting behaviour. Epicephala pollination evolved multiple times in Phyllantheae, at least thrice accompanied by transition from sexual monomorphism to dimorphism in floral scent. This is the first example in which sexually dimorphic floral scent has evolved to signal an alternative reward provided by each sex, provoking the pollinator''s legitimate altruistic behaviour.  相似文献   

14.
Flowers or inflorescences often deploy various signals, including visual, olfactory, and gustatory cues, that can be detected by their pollinators. In many plants, these cues and their functions are poorly understood. Deciphering the interactions between floral cues and pollinators is crucial for analyzing the reproductive success of flowering plants. In this study, we examined the composition of the fetid floral scents produced by several Stemona species, including nine S. tuberosa populations from across China, using dynamic headspace adsorption, gas chromatography, and mass spectrometry techniques. We compared variations in floral phenotype, including floral longevity, nectar rewards, pollinator behavior, and flower length and color among the Stemona species. Of the 54 scent compounds identified, the major compounds include fetid dimethyl disulfide, dimethyl trisulfide, 1‐pyrroline, butyric acid, p‐cresol, isoamyl alcohol, and indole. We detected striking differentiation in floral scent at both the species and population level, and even within a population of plants with different colored flowers. Floral characteristics related to sapromyophily and deceptive pollination, including flower color mimicking livor mortis and a lack of nectar, were found in five Stemona species, indicating that Stemona is a typical sapromyophilous taxon. Species of this monocot genus might employ evolutionary tactics to exploit saprophilous flies for pollination.  相似文献   

15.

Premise

Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths).

Methods

We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera.

Results

Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees.

Conclusions

The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.  相似文献   

16.
Ecological interactions between flowers and pollinators are all about timing.Flower opening/closing and scent emissions are largely synchronized with pollinator activity,and a circadian clock regulates these rhythms.However,whether the circadian clock increases a plant's reproductive success by regulating these floral rhythms remains untested.Flowers of Nicotiana attenuata,a wild tobacco,diurnally and rhythmically open,emit scent and move vertically through a 140° arc to interact with nocturnal hawkmoths.We tethered flowers to evaluate the importance of flower positions for Manduca sexta-mediated pollinations;flower position dramatically influenced pollination.We examined the pollination success of phase-shifted flowers,silenced in circadian clock genes,NaZTL,NaLHY,and NaTOCi,by RNAi.Circadian rhythms in N.attenuata flowers are responsible for altered seed set from outcrossed pollen.  相似文献   

17.
Kudo G  Ishii HS  Hirabayashi Y  Ida TY 《Oecologia》2007,154(1):119-128
Floral color change has been recognized as a pollination strategy, but its relative effectiveness has been evaluated insufficiently with respect to other floral traits. In this study, effects of floral color change on the visitation pattern of bumblebees were empirically assessed using artificial flowers. Four inflorescence types were postulated as strategies of flowering behavior: type 1 has no retention of old flowers, resulting in a small display size; type 2 retains old flowers without nectar production; type 3 retains old flowers with nectar; and type 4 retains color-changed old flowers without nectar. Effects of these treatments varied depending on both the total display size (single versus multiple inflorescences) and the pattern of flower-opening. In the single inflorescence experiment, a large floral display due to the retention of old flowers (types 2–4) enhanced pollinator attraction, and the number of flower visits per stay decreased with color change (type 4), suggesting a decrease in geitonogamous pollination. Type-4 plants also reduced the foraging time of bees in comparison with type-2 plants. In the multiple inflorescence experiment, the retention of old flowers did not contribute to pollinator attraction. When flowering occurred sequentially within inflorescences, type-4 plants successfully decreased the number of visits and the foraging time in comparison with type-2 plants. In contrast, floral color change did not influence the number of visits, and it extended the foraging time when flowering occurred simultaneously within inflorescences but the opening of inflorescences progressed sequentially within a plant. Therefore, the effectiveness of floral color change is highly susceptible to the display size and flowering pattern within plants, and this may limit the versatility of the color change strategy in nature.  相似文献   

18.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

19.
Nectar is the most common floral reward that plants produce to attract pollinators. To determine the effect of nectar production on hawkmoth behavior, pollen movement, and reproductive success in Mirabilis multiflora, I manipulated nectar volumes and observed the subsequent foraging behavior of the hawkmoth Hyles lineata and the resulting pollen movement patterns. Individual hawkmoths visited significantly more flowers on plants with more nectar. The increase in flower visits significantly increased pollen deposition on stigmas and pollen removal from anthers when nectar volume was raised to twice the highest level found in nature. As hawkmoths visited flowers consecutively on a plant, the proportion of self pollen deposited on stigmas increased significantly and rapidly. Based on simulated hawkmoth visits, seed set was significantly reduced for flowers later in a visit sequence. A simple model combining these results predicts that the form of selection on nectar production varies depending on pollinator abundance. Using a multiple regression analysis a nearly significant (P < 0.08) effect of stabilizing selection was detected during a single season as predicted by the model for the prevailing hawkmoth abundance. Although increased nectar production may indirectly affect plant fitness by reducing resources available for other plant functions, the direct effect of high nectar production on pollinator behavior and self pollination may generally limit floral nectar production.  相似文献   

20.
Background and AimsThe transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic–alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer.MethodsIn a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece.Key ResultsThe self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories.ConclusionsOur study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号