共查询到20条相似文献,搜索用时 0 毫秒
1.
Jameson Mori;William Brown;Daniel Skinner;Peter Schlichting;Jan Novakofski;Nohra Mateus-Pinilla; 《Ecology and evolution》2024,14(11):e70487
White-tailed deer (Odocoileus virginianus) are a cervid species found mostly in the Americas. Managing white-tailed deer requires understanding their relationship with the environment, which was characterized by Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) for all counties in Illinois, USA, who incorporated habitat quantity and quality in a deer habitat suitability index. However, this index was based on satellite imagery from 1996 and did not explore the smaller spatial scales used by deer. Our study addressed these gaps by developing a deer land cover utility (LCU) score for each TRS (township, range, and section), township, and county in Illinois based on the methodology outlined in Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) but using data from the National Land Cover Database (2001–2021). These deer LCU scores were validated against minimum deer population data using Bayesian regression with additional covariates relevant to hunting and deer density. These models performed well with Bayesian R2 values of 0.501 (TRS), 0.5 (township), and 0.969 (county). The regression coefficients for the deer LCU scores were statistically significant (95% credibility interval not containing 0) and positive at the TRS, township, and county levels, reflecting the expected relationship between minimum deer density and deer LCU. Predictions made by these regression models on new data were accurate, with the median absolute difference between the true and predicted values being 0.398 deer/km2 for TRS', 0.085 deer/km2 for townships, and 0.066 deer/km2 for counties. This deer LCU could be used in other studies about deer in Illinois or studies in which deer are a relevant factor such as investigations about deer disease or tick distribution. This modeling approach could also be adapted to different wild species, locations, and/or time periods for which land cover data is available. 相似文献
2.
Bernd Blossey Paul Curtis Jason Boulanger Andrea Dvalos 《Ecology and evolution》2019,9(23):13085-13103
After decades of high deer populations, North American forests have lost much of their previous biodiversity. Any landscape‐level recovery requires substantial reductions in deer herds, but modern societies and wildlife management agencies appear unable to devise appropriate solutions to this chronic ecological and human health crisis. We evaluated the effectiveness of fertility control and hunting in reducing deer impacts at Cornell University. We estimated spring deer populations and planted Quercus rubra seedlings to assess deer browse pressure, rodent attack, and other factors compromising seedling performance. Oak seedlings protected in cages grew well, but deer annually browsed ≥60% of unprotected seedlings. Despite female sterilization rates of >90%, the deer population remained stable. Neither sterilization nor recreational hunting reduced deer browse rates and neither appears able to achieve reductions in deer populations or their impacts. We eliminated deer sterilization and recreational hunting in a core management area in favor of allowing volunteer archers to shoot deer over bait, including at night. This resulted in a substantial reduction in the deer population and a linear decline in browse rates as a function of spring deer abundance. Public trust stewardship of North American landscapes will require a fundamental overhaul in deer management to provide for a brighter future, and oak seedlings may be a promising metric to assess success. These changes will require intense public debate and may require new approaches such as regulated commercial hunting, natural dispersal, or intentional release of important deer predators (e.g., wolves and mountain lions). Such drastic changes in deer management will be highly controversial, and at present, likely difficult to implement in North America. However, the future of our forest ecosystems and their associated biodiversity will depend on evidence to guide change in landscape management and stewardship. 相似文献
3.
ABSTRACT Debate within the popular and technical literature regarding predictability of antler size at maturity based on 1.5-year antler size in white-tailed deer (Odocoileus virginianus) has led to confusion and uncertainty within constituent groups. Koerth and Kroll (2008) provided measures of age-related antler development using recaptures of known-age males from 12 deer populations in southern Texas. Several design and analysis issues reduce the scope and validity of their conclusion that amount of growth in the first set of antlers was a poor predictor of antler growth at maturity. Although unstated, the statistical hypothesis they tested did not coincide with their specific conclusions. Using a simulation, we show that their methods were susceptible to measurement bias. Their results are applicable only to populations with similar culling and management programs. Additionally, we provide recommendations for future research projects that evaluate predictability of antler size at maturity based on antler size at younger ages. 相似文献
4.
Glenn D. DelGiudice Barry A. Sampson John H. Giudice 《The Journal of wildlife management》2013,77(8):1664-1675
5.
ABSTRACT In the Adirondack region of northern New York, USA, severe weather and deep snow typically force white-tailed deer (Odocoileus virginianus) to congregate in areas of dense coniferous cover and along watercourses at lower elevations. We examined 16 yards in the Adirondacks and explored the observation that deer have changed their movement behavior to incorporate residential communities within their wintering areas. We compared locations of deer herds in 2003 and 2004 to deer wintering areas mapped during the 1960s and 1970s. Deer were predominantly absent in 9 of 16 historical yards but were present in residential communities within the same drainage. Yarding areas to which deer shifted contained more residential, deciduous, and mixed cover than yards where no shift occurred, indicating that deer in residential areas were using conifer and mixed cover at a finer scale than deer in nonresidential areas. Smaller winter ranges and core areas of marked deer in a residential winter yard further imply greater concentration of resources available in these areas. Marked deer demonstrated flexibility in core winter range fidelity, a behavior that allows for more permanent shifts as habitat and food resources change or as new areas with appropriate resources are encountered. Our study suggests that low-density residential areas in lowland conifer forests may provide an energetic advantage for deer during winter due to the assemblage of quality habitat interspersed with open areas and a variety of potential food sources in environments where movement is typically constrained by deep snow. Managers should consider the potential for changes in use of deer wintering areas prior to land conservation efforts and may need to adapt management strategies to reduce conflicts in communities occupied by deer during winter. 相似文献
6.
7.
Melissa M. Turner Aimee P. Rockhill Christopher S. DePerno Jonathan A. Jenks Robert W. Klaver Angela R. Jarding Troy W. Grovenburg Kenneth H. Pollock 《The Journal of wildlife management》2011,75(4):905-912
Coyotes (Canis latrans) may affect adult and neonate white-tailed deer (Odocoileus virginianus) survival and have been implicated as a contributor to the decline of deer populations. Additionally, coyote diet composition is influenced by prey availability, season, and region. Because coyote movement and diet vary by region, local data are important to understand coyote population dynamics and their impact on prey species. In southeast Minnesota, we investigated the effect of coyotes on white-tailed deer populations by documenting movement rates, distances moved, and habitats searched by coyotes during fawning and nonfawning periods. Additionally, we determined survival, cause-specific mortality, and seasonal diet composition of coyotes. From 2001 to 2003, we captured and radiocollared 30 coyotes. Per-hour rate of movement averaged 0.87 km and was greater (P = 0.046) during the fawning (1.07 km) than the nonfawning period (0.80 km); areas searched were similar (P = 0.175) between seasons. Coyote habitat use differed during both seasons; habitats were not used in proportion to their availability (P < 0.001). Croplands were used more (P < 0.001) than their proportional availability during both seasons. Use of grasslands was greater during the fawning period (P = 0.030), whereas use of cropland was greater in the nonfawning period (P < 0.001). We collected 66 fecal samples during the nonfawning period; coyote diets were primarily composed of Microtus spp. (65.2%), and consumption of deer was 9.1%. During the study, 19 coyotes died; annual survival rate range was 0.33–0.41, which was low compared with other studies. Consumption of deer was low and coyotes searched open areas (i.e., cropland) more than fawning areas with dense cover. These factors in addition to high coyote mortality suggested that coyote predation was not likely limiting white-tailed deer populations in southeast Minnesota. © 2011 The Wildlife Society. 相似文献
8.
W. DAVID WALTER KURT C. VERCAUTEREN JASON M. GILSDORF SCOTT E. HYGNSTROM 《The Journal of wildlife management》2009,73(3):339-344
ABSTRACT The expansion of the cellulosic biofuels industry throughout the United States has broad-scale implications for wildlife management on public and private lands. Knowledge is limited on the effects of reverting agriculture to native grass, and vice versa, on size of home range and habitat use of white-tailed deer (Odocoileus virginianus). We followed 68 radiocollared female deer from 1991 through 2004 that were residents of DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska, USA. The refuge was undergoing conversion of vegetation out of row-crop agriculture and into native grass, forest, and emergent aquatic vegetation. Habitat in DNWR consisted of 30% crop in 1991 but removing crops to establish native grass and wetland habitat at DNWR resulted in a 44% reduction in crops by 2004. A decrease in the amount of crops on DNWR contributed to a decline in mean size of annual home range from 400 ha in 1991 to 200 ha in 2005 but percentage of crops in home ranges increased from 21% to 29%. Mean overlap for individuals was 77% between consecutive annual home ranges across 8 years, regardless of crop availability. Conversion of crop to native habitat will not likely result in home range abandonment but may impact disease transmission by increasing rates of contact between deer social groups that occupy adjacent areas. Future research on condition indices or changes in population parameters (e.g., recruitment) could be incorporated into the study design to assess impacts of habitat conversion for biofuel production. 相似文献
9.
Amanda M. McGraw Daniel J. Storm Dustin R. Bronson Teresa Pearson 《The Journal of wildlife management》2022,86(2):e22176
In temperate and northern ecosystems where there are pronounced seasonal patterns in weather and available energy, there are corresponding patterns of body condition among white-tailed deer (Odocoileus virginianus). Body condition of white-tailed deer can affect survival and reproduction, which has large repercussions for state-level natural resource agencies that allocate hunting permits. In this study, we investigated how variation in winter weather, spring phenology, habitat composition, and browse quantity affected white-tailed deer body condition across a large spatial scale. Several body condition indicators (e.g., carcass mass, heart fat, antler size) were measured by hunters for 795 deer during September–December 2016–2018 in Wisconsin, USA. Winter severity in the previous year was an unreliable predictor of fall body condition of deer when winters were considered mild or moderate. The timing of spring green-up had a consistent effect on the body condition of all age and sex classes of deer. Earlier spring green-up resulted in heavier fawns and larger antlers among adult males. Region and spring green-up interacted to affect the heart fat of adult females. Earlier springs resulted in adult females in northern and central Wisconsin having a higher probability of heavy heart fat, whereas spring green-up had no effect on adult female heart fat in southern Wisconsin. Effects of habitat differed by age and sex class of deer, and by the body condition metric being evaluated, indicating that there are important physiological differences among age and sex classes of deer that are affected by the environment. Our study demonstrates that the hunting public can contribute large-scale, cost-effective, and quality data to deer monitoring and research projects. It is important that natural resource agencies be able to identify and recruit highly engaged members of the hunting public to ensure project success. The timing of spring green-up can have lasting effects on deer health that can be consistently observed the following fall, which is in contrast to the effects of winter severity that did not appear to persist when previous winters were mild or moderate. We encourage managers in northern or temperate regions to consider measures of spring green-up timing in conjunction with traditional winter severity when making deer population management decisions, such as antlerless tag allocation. 相似文献
10.
Chloe A. Wright Jon T. Mcroberts Kevyn H. Wiskirchen Barbara J. Keller Joshua J. Millspaugh 《The Journal of wildlife management》2019,83(6):1401-1414
Landscape-level habitat characteristics affect neonatal white-tailed deer (Odocoileus virginianus) survival. Little is known, however, about how changes in maternal habitat use after parturition affect neonate survival. We quantified survival rates and determined if neonate survival to 8 weeks was affected by weekly maternal habitat use in the agricultural Glaciated Plains (GP) and forest-grassland Ozark (OZ) eco-regions of Missouri, USA. We captured 127 pregnant female deer during 2015–2017, and fitted each with a global positioning system (GPS) radio-collar and vaginal implant transmitter (VIT). We captured 226 neonatal deer during 2015–2017, fitted each with an expandable radio-collar, and monitored survival status daily. We estimated weekly maternal home ranges and calculated habitat metrics within these home ranges. We used the Kaplan-Meier estimator to calculate 8-week survival estimates and Cox proportional hazards models to investigate the influence of habitat metrics on neonate survival. The 8-week survival estimates were 0.43 (95% CI = 0.35–0.54) and 0.47 (95% CI = 0.38–0.57) in the GP and OZ, respectively. Both of these survival estimates were lower than expected but particularly so in the GP because it is dominated by agricultural fields, a land cover type typically associated with high survival. Neonate survival in the GP was negatively correlated with the amount of edge and forest patch size within maternal home ranges. In the OZ, female neonate survival was positively correlated with birth mass, male neonate survival was not affected by birth mass, and survival of both sexes was negatively correlated with grassland patch density. We suspect these habitat metrics were related to predator searching efficiency and abundance. In the highly fragmented GP, predators might be able to easily search the largest cover habitat patches, whereas in the more contiguous OZ landscape, where cover habitat patch sizes were > 10 times the size of patches in the GP, large patches might be difficult for predators to search efficiently. Therefore, we recommend managers consider the larger landscape context when making habitat management decisions to increase white-tailed deer population productivity. © 2019 The Wildlife Society. 相似文献
11.
TIM L. HILLER HENRY CAMPA III SCOTT R. WINTERSTEIN 《The Journal of wildlife management》2009,73(2):201-209
12.
As part of a study to develop contraceptive methods for white-tailed deer (Odocoileus virginianus), it was necessary to terminate pregnancies in some does. The abortifacient chosen was PGF2α. At 76 days or less of gestation, PGF2α administration (10 mg i.m.) did not decrease mean serum progesterone (P) concentrations, and only one doe of 13 aborted. Re-administration of PGF2α (15 mg i.m.) on approximately day 97 of gestation (21 days after the first injection) did not alter mean serum P concentrations 6 days postinjection, and only one doe of 11 aborted. A third injection of PGF2α (25 mg i.v.) on approximately day 113 of gestation (16 days after the second injection) tended to decrease mean P concentrations by 1.4 ng/ml 2 days following treatment, and no doe of 11 aborted. A fourth injection of PGF2α (50 mg i.m.) on approximately day 124 of gestation (11 days after the third injection) decreased mean P concentrations by 2.9 ng/ml 2 days following treatment (P < 0.05), and two of 11 does aborted. Finally, a combination of 50 mg PGF2α and 15 mg betamethasone was administered i.m. to the remaining pregnant does on approximately day 140 of gestation (16 days after the fourth injection). Mean serum P concentrations decreased from 4.8 ± 0.4 ng/ml to 0.7 ± 0.2 ng/ml 3 days postinjection, a mean decrease of 4.1 ng/ml (P < 0.05). This treatment induced abortion in five of seven does. These data suggest that PGF2α alone, at a dose that causes luteolysis and pregnancy termination in cows and goats, does not do so in pregnant white-tailed deer. However, a combination of betamethasone and PGF2α may prove to be an effective lu-teolytic agent or abortifacient for white-tailed deer. © 1994 Wiley-Liss, Inc. 相似文献
13.
PHILLIP D. JONES MELINDA R. MIXON STEPHEN DEMARAIS 《The Journal of wildlife management》2009,73(7):1166-1173
ABSTRACT Evaluation of habitat management practices at mid-rotation is needed for pine (Pinus spp.) plantations enrolled in cost-share programs. Plantations established in abandoned agricultural fields may have different understory plant communities than those with a long history of forest cover. Mid-rotation pine plantations often have a hardwood midstory that limits development of early succession habitat components important to white-tailed deer (Odocoileus virginianus; deer) and northern bobwhite (Colinus virginianus; bobwhite). We treated with imazapyr herbicide and prescribed burning (HB) 11 thinned, 13–22-year-old pine plantations in the Upper East Gulf Coastal Plain of Mississippi, USA, enrolled in cost-share programs, and we sampled plant community response during the summers of 2003 and 2004, years 1 and 2 posttreatment. The HB treatment created a more open structure with greater coverage of debris and herbaceous plants than in controls. Increased forb coverage in HB plots yielded a more seasonally diverse foraging base for deer. Horizontal screening cover developed slowly in HB plots and was more abundant in control plots. Autumn and winter food-plant coverage for bobwhite was provided by either treatment, but accessibility was improved in HB plots relative to controls. Bobwhite nesting cover was improved by HB relative to controls but was still of marginal quality. Brood-rearing habitat was precluded in both treatments due to lack of bare ground. Our results indicate that imazapyr followed by prescribed fire is a beneficial tool for creating early succession habitat for deer and bobwhite in mid-rotation pine plantations with a history of agricultural use. Continued management with periodic prescribed fire and overstory thinning should be instituted to maintain and perhaps improve these conditions. 相似文献
14.
15.
Troy W. Grovenburg Robert W. Klaver Jonathan A. Jenks 《The Journal of wildlife management》2012,76(5):944-956
Environmental factors, such as forest characteristics, have been linked to fawn survival in eastern and southern white-tailed deer (Odocoileus virginianus) populations. In the Great Plains, less is known about how intrinsic and habitat factors influence fawn survival. During 2007–2009, we captured and radiocollared 81 fawns in north-central South Dakota and recorded 23 mortalities, of which 18 died before 1 September. Predation accounted for 52.2% of mortality; remaining mortality included human (hunting, vehicle, and farm accident; 26.1%) and hypothermia (21.7%). Coyotes (Canis latrans) accounted for 83.3% of predation on fawns. We used known-fate analysis in Program MARK to estimate summer (15 May–31 Aug) survival rates and investigated the influence of intrinsic and habitat variables on survival. We developed 2 a priori model sets, including intrinsic variables and a test of annual variation in survival (model set 1) and habitat variables (model set 2). Model set 1 indicated that summer survival varied among years (2007–2009); annual survival rates were 0.94 (SE = 0.06, n = 22), 0.78 (SE = 0.09, n = 27), and 0.54 (SE = 0.10, n = 32), respectively. Model set 2 indicated that survival was further influenced by patch density of cover habitats (Conservation Reserve Program [CRP]-grasslands, forested cover, and wetlands). Mean CRP-grassland and wetland patch density (no. patches/100 ha) were greater (P < 0.001) in home-range areas of surviving fawns ( = 1.81, SE = 0.10, n = 63; = 1.75, SE = 0.14, n = 63, respectively) than in home-range areas of fawns that died ( = 0.16, SE = 0.04, n = 18; = 1.28, SE = 0.10, n = 18, respectively). Mean forested cover patch density was less (P < 0.001) in home-range areas of surviving fawns ( = 0.77, SE = 0.10, n = 63) than in home-range areas of fawns that died ( = 1.49, SE = 0.21, n = 18). Our results indicate that management activities should focus on CRP-grassland and wetland habitats in order to maintain or improve fawn survival in the northern Great Plains, rather than forested cover composed primarily of tree plantings and shelterbelts. © 2012 The Wildlife Society. 相似文献
16.
ALEXANDRA B. FELIX DANIEL P. WALSH BRANDI D. HUGHEY HENRY CAMPA III SCOTT R. WINTERSTEIN 《The Journal of wildlife management》2007,71(3):804-810
Abstract: Ecologically based management must incorporate components that consider how individuals associate temporally and spatially to environments that provide specific habitat requirements. Recent research has assessed how environments could be classified based on potential to provide deer (Odocoileus virginianus) habitat components. If habitat potential (HP; i.e., capability of habitat types to provide annual life requisites) classifications can be correlated to deer spatial structure and seasonal movement patterns, managers could better understand how spatial distribution of habitat components influences deer distribution. We analyzed home-range distribution and seasonal movement patterns from 45 adult (≥2 yr old) female deer radiocollared between 1999-2002, and deer habitat characteristics in northeastern Lower Peninsula, Michigan, USA, to investigate whether we can predict deer seasonal movement patterns based on the distribution of HP. We constructed logistic regression models that calculated the probability of deer migration given specific HP within seasonal home ranges of migratory and nonmigratory deer. Our results suggested that the probability of seasonal deer migrations relates to the juxtaposition (arrangement) of different habitat types that collectively provide all annual life requisites. We demonstrated that use of habitat-type classifications and HP models can track and predict deer movement patterns, which can facilitate establishment of management units and ecologically based deer management practices. 相似文献
17.
18.
Charles A. DeYoung Timothy E. Fulbright David G. Hewitt David B. Wester Don A. Draeger 《野生动植物专论》2019,202(1):1-63
Density-dependent behavior underpins white-tailed deer (Odocoileus virginianus) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km2), 25 deer (31 deer/km2), and 40 deer (50 deer/km2), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement ad libitum, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained >50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (P > 0.57) between deer density treatments. Percent grass in deer diets was higher (P = 0.05) at high deer density but composed only 1.3 ± 0.3% (SE) of the diet. Digestible protein and metabolizable energy of diets were similar (P > 0.45) between deer density treatments. Likewise, bite rate, bite size, and dry matter intake did not vary (P > 0.45) with deer density. Unlike deer density, drought had dramatic (P ≤ 0.10) effects on foraging of tractable deer. During drought conditions, the proportion of shrubs and flowers increased in deer diets, whereas forbs declined. Digestible protein was 31%, 53%, and 54% greater (P = 0.06) during non-drought than drought during autumn, winter, and spring, respectively. We studied the effects of enhanced nutrition on the composition and quality of tractable female deer diets between April 2007 and February 2009, 3 years after we established density treatments in enclosures. We also estimated the proportion of supplemental feed in deer diets. We used the 2 low-density enclosures on each study site, 1 with enhanced nutrition and 1 with natural nutrition (4 total enclosures). We again used the bite count technique and 2–3 tractable deer living in each enclosure. We estimated proportion of pelleted feed in diets of tractable deer and non-tractable deer using ratios of stable isotopes of carbon. Averaged across seasons and nutrition treatments, shrubs composed a majority of the vegetation portion of deer diets (44%), followed by mast (26%) and forbs (15%). Enhanced nutrition influenced the proportion of mast, cacti, and flowers in the diet, but the nature and magnitude of the effect varied by season and year. The trend was for deer in natural-nutrition enclosures to eat more mast. We did not detect a statistical difference (P = 0.15) in the proportion of shrubs in diets between natural and enhanced nutrition, but deer with enhanced nutrition consumed 7–24% more shrubs in 5 of 8 seasons. Deer in enhanced-nutrition enclosures had greater (P = 0.03) digestible protein in their overall diet than deer in natural-nutrition enclosures. The effect of enhanced nutrition on metabolizable energy in overall diets varied by season and was greater (P < 0.04) for enhanced-nutrition deer during summer and autumn 2007 and winter 2008. In the enhanced-nutrition treatment, supplemental feed averaged 47–80% of the diet of tractable deer. Of non-tractable deer in all density treatments with enhanced nutrition, 97% (n = 128 deer) ate supplemental feed. For non-tractable deer averaged across density treatments, study sites, and years, percent supplemental feed in deer diets exceeded 70% for all sex and age groups. We determined if increasing deer density and enhanced nutrition resulted in a decline in preferred forbs and shrubs and an increase in plants less preferred by deer. We sampled all 12 enclosures via 20, 50-m permanent transects in each enclosure. Percent canopy cover of preferred forbs was similar (P = 0.13) among deer densities averaged across nutrition treatments and sampling years (low density: = 8%, SE range 6–10; medium density: 5%, 4–6; high density: 4%, 3–5; SE ranges are presented because SEs associated with backtransformed means are asymetrical). Averaged across deer densities, preferred forb canopy cover was similar between nutrition treatments in 2004; but by 2012 averaged 20 ± 17–23% in enhanced-nutrition enclosures compared to 10 ± 8–13% in natural-nutrition enclosures (P = 0.107). Percent canopy cover of other forbs, preferred shrubs, other shrubs, and grasses, as well as Shannon's index, evenness, and species richness were similar (P > 0.10) among deer densities, averaged across nutrition treatments and sampling years. We analyzed fawn:adult female ratios, growth rates of fawns and yearlings, and survival from 6 to 14 months of age and for adults >14 months of age. We assessed adult body mass and population growth rates (lambda apparent, λAPP) to determine density and nutrition effects on deer populations in the research enclosures during 2004–2012. Fawn:adult female ratios declined (P = 0.04) from low-medium density to high density in natural-nutrition enclosures but were not affected (P = 0.48) by density in enhanced nutrition enclosures although, compared to natural nutrition, enhanced nutrition increased fawn:adult female ratios by 0.15 ± 0.12 fawns:adult female at low-medium density and 0.44 ± 0.17 fawns:adult female at high density. Growth rate of fawns was not affected by deer density under natural or enhanced nutrition (P > 0.17) but increased 0.03 ± 0.01 kg/day in enhanced-nutrition enclosures compared to natural nutrition (P < 0.01). Growth rate of yearlings was unaffected (P > 0.71) by deer density, but growth rate increased for males in some years at some density levels in enhanced-nutrition enclosures. Adult body mass declined in response to increasing deer density in natural-nutrition enclosures for both adult males (P < 0.01) and females (P = 0.10). Enhanced nutrition increased male body mass, but female mass did not increase compared to natural nutrition. Survival of adult males was unaffected by deer density in natural- (P = 0.59) or enhanced- (P = 0.94) nutrition enclosures. Survival of adult females was greatest in medium-density enclosures with natural nutrition but similar at low and high density (P = 0.04). Enhanced nutrition increased survival of females (P < 0.01) and marginally for males (P = 0.11). Survival of fawns 6–14 months old was unaffected (P > 0.35) by density in either natural- or enhanced-nutrition treatments but was greater (P = 0.04) under enhanced nutrition. Population growth rate declined (P = 0.06) with increasing density in natural-nutrition enclosures but not (P = 0.55) in enhanced nutrition. Enhanced nutrition increased λAPP by 0.32. Under natural nutrition, we found only minor effects of deer density treatments on deer diet composition, nutritional intake, and plant communities. However, we found density-dependent effects on fawn:adult female ratios, adult body mass, and population growth rate. In a follow-up study, deer home ranges in our research enclosures declined with increasing deer density. We hypothesized that habitat quality varied among home ranges and contributed to density-dependent responses. Variable precipitation had a greater influence on deer diets, vegetation composition, and population parameters than did deer density. Also, resistance to herbivory and low forage quality of the thornshrub vegetation of our study sites likely constrained density-dependent behavior by deer. We posit that it is unlikely that, at our high-density (50 deer/km2) and perhaps even medium-density (31 deer/km2) levels, negative density dependence would occur without several wet years in close association. In the past century, this phenomenon has only happened once (1970s). Thus, density dependence would likely be difficult to detect in most years under natural nutrition in this region. Foraging by deer with enhanced nutrition did not result in a reduction in preferred plants in the vegetation community and had a protective effect on preferred forbs because ≤53% of deer diets consisted of vegetation. However, enhanced nutrition improved fitness of individual deer and deer populations, clearly demonstrating that nutrition is limiting for deer populations under natural conditions in western South Texas. © 2019 The Authors. Wildlife Monographs published by Wiley Periodicals, Inc. on behalf of The Wildlife Society. 相似文献
19.
Troy W. Grovenburg Christopher C. Swanson Christopher N. Jacques Robert W. Klaver Todd J. Brinkman Benjamin M. Burris Christopher S. Deperno Jonathan A. Jenks 《The Journal of wildlife management》2011,75(1):213-220
Understanding the influence of intrinsic (e.g., age, birth mass, and sex) and habitat factors on survival of neonate white-tailed deer improves understanding of population ecology. During 2002–2004, we captured and radiocollared 78 neonates in eastern South Dakota and southwestern Minnesota, of which 16 died before 1 September. Predation accounted for 80% of mortality; the remaining 20% was attributed to starvation. Canids (coyotes [Canis latrans], domestic dogs) accounted for 100% of predation on neonates. We used known fate analysis in Program MARK to estimate survival rates and investigate the influence of intrinsic and habitat variables on survival. We developed 2 a priori model sets, including intrinsic variables (model set 1) and habitat variables (model set 2; forested cover, wetlands, grasslands, and croplands). For model set 1, model {Sage-interval} had the lowest AICc (Akaike's information criterion for small sample size) value, indicating that age at mortality (3-stage age-interval: 0–2 weeks, 2–8 weeks, and >8 weeks) best explained survival. Model set 2 indicated that habitat variables did not further influence survival in the study area; β-estimates and 95% confidence intervals for habitat variables in competing models encompassed zero; thus, we excluded these models from consideration. Overall survival rate using model {Sage-interval} was 0.87 (95% CI = 0.83–0.91); 61% of mortalities occurred at 0–2 weeks of age, 26% at 2–8 weeks of age, and 13% at >8 weeks of age. Our results indicate that variables influencing survival may be area specific. Region-specific data are needed to determine influences of intrinsic and habitat variables on neonate survival before wildlife managers can determine which habitat management activities influence neonate populations. © 2011 The Wildlife Society 相似文献
20.
Abstract: Past studies using penned deer provide conflicting results on the age when reliable predictions about antler growth potential in white-tailed deer (Odocoileus virginianus) can be made. We captured wild whitetail males via aerial net gun on 12 ranches in 5 counties in south Texas, USA, from 1999 to 2007 to determine if a reliable juvenile-to-adult relationship in antler development existed. We individually marked and released captured animals at the trap site after we took antler and body measurements. We recaptured marked animals as possible in subsequent years or until we obtained final measurements after legal harvest. Amount of growth in the first set of antlers in whitetail males was a poor predictor of antler growth at maturity. By 4.5 years of age there were no differences (P > 0.05) in antler measurements regardless of the amount of development of the first set of antlers at 1.5 years. We concluded culling of yearling males based on number of antler points would have little positive effect on overall antler quality in future years. 相似文献