首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retroviral DNA integration: structure of an integration intermediate   总被引:97,自引:0,他引:97  
T Fujiwara  K Mizuuchi 《Cell》1988,54(4):497-504
The structure of a presumptive DNA intermediate in the integration of retroviral DNA was studied in a cell-free reaction with exogenously added target DNA. The product made by viral core particles of Moloney murine leukemia virus (Mo-MLV) containing linear viral DNA has a structure consistent with an integration mechanism similar to that observed during bacteriophage Mu transposition. In this intermediate, the 3' ends of the LTR sequences are joined to the target DNA, while the 5' ends of the viral DNA remain unjoined. The 5' ends of the LTR sequences in the intermediate are exactly the same as those found in the unintegrated linear double-stranded viral DNA. This result demonstrates that the linear form of Mo-MLV DNA can integrate directly without prior circularization.  相似文献   

2.
R Craigie  K Mizuuchi 《Cell》1985,41(3):867-876
Mu transposition works efficiently in vitro and generates both cointegrate and simple insert products. We have examined the reaction products obtained under modified in vitro reaction conditions that do not permit efficient initiation of DNA replication. The major product is precisely the intermediate structure predicted from one of the current models of DNA transposition. Both cointegrates and simple inserts can be made in vitro using this intermediate as the DNA substrate, demonstrating that it is indeed a true transposition intermediate. The requirements for efficient formation of the intermediate include the Mu A protein, the Mu B protein, an unknown number of E. coli host proteins, ATP, and divalent cation. Only E. coli host proteins are required for conversion of the intermediate to cointegrate or simple insert products. Structures resulting from DNA strand transfer at only one end of the transposon are not observed, suggesting that the strand transfers at each end of the transposon are tightly coupled.  相似文献   

3.
As an early step in DNA strand exchange reactions, the recA protein aligns homologous sequences within two DNA molecules to form a putative triple-stranded intermediate. In virtually all models for three-stranded DNA proposed to date, hydrogen bonds involving the N-7 position of guanine have played a prominent structural role. To determine whether the N-7 position of guanine is required for triple helix and heteroduplex formation in the recA protein-mediated DNA pairing reaction, guanine was completely replaced by the base analog 7-deazaguanine in both strands of the duplex DNA substrate using polymerase chain reaction. This modified double-strand DNA was reacted with unmodified single-strand DNA in vitro. The 7-deazaguanine-substituted DNA functioned as well as the unsubstituted DNA in recA protein-mediated DNA three-strand exchange reactions. Strand exchange reactions involving four strands also proceeded normally when three of the four strands contained 7-deazaguanine rather than guanine. In fact, the rate of strand exchange improved somewhat when the modified DNA substrates were used. This indicates either that the N-7 position of guanine is not essential for the formation of the putative triple-stranded DNA pairing intermediate, or that a three-stranded (or four-stranded) structure is not an obligate intermediate in recA protein-mediated DNA strand exchange.  相似文献   

4.
Geometric arrangements of Tn3 resolvase sites   总被引:8,自引:0,他引:8  
Site-specific recombination by Tn3 resolvase normally occurs in vitro and in vivo only between directly repeated res sites on the same supercoiled DNA molecule. However, with multiply interlinked catenane substrates consisting of two DNA rings each containing a single res site, resolvase efficiently carried out intermolecular recombination. The topology of the knots produced by several rounds of this reaction proves that the DNA within the synaptic intermediate is coiled in an interwound (plectonemic) fashion rather than wrapped solenoidally around resolvase as in previously characterized supercoiled DNA-protein complexes. The synaptic intermediate can contain equivalently supercoil, catenane, or knot crossings as long as the res sites have a right-handed coiling and a particular relative orientation. The structure of the product knots and catenanes also shows the path the DNA takes during strand exchange. Intermolecular recombination within multiply linked catenanes required negative supercoiling, as does the standard intramolecular reaction.  相似文献   

5.
Product-assisted catalysis in base-excision DNA repair   总被引:7,自引:0,他引:7  
Most spontaneous damage to bases in DNA is corrected through the action of the base-excision DNA repair pathway. Base excision repair is initiated by DNA glycosylases, lesion-specific enzymes that intercept aberrant bases in DNA and catalyze their excision. How such proteins accomplish the feat of catalyzing no fewer than five sequential reaction steps using a single active site has been unknown. To help answer this, we report the structure of a trapped catalytic intermediate in DNA repair by human 8-oxoguanine DNA glycosylase. This structure and supporting biochemical results reveal that the enzyme sequesters the excised lesion base and exploits it as a cofactor to participate in catalysis. To our knowledge, the present example represents the first documented case of product-assisted catalysis in an enzyme-catalyzed reaction.  相似文献   

6.
The integrase encoded by human immunodeficiency virus type 1 (HIV-1) is required for integration of viral DNA into the host cell chromosome. In vitro, integrase mediates a concerted cleavage-ligation reaction (strand transfer) that results in covalent attachment of viral DNA to target DNA. With a substrate that mimics the strand transfer product, integrase carries out disintegration, the reverse of the strand transfer reaction, resolving this integration intermediate into its viral and target DNA parts. We used a set of disintegration substrates to study the catalytic mechanism of HIV-1 integrase and the interaction between the protein and the viral and target DNA sequence. One substrate termed dumbbell consists of a single oligonucleotide that can fold to form a structure that mimics the integration intermediate. Kinetic analysis using the dumbbell substrate showed that integrase turned over, establishing that HIV-1 integrase is an enzyme. Analysis of the disintegration activity on the dumbbell substrate and its derivatives showed that both the viral and target DNA parts of the molecule were required for integrase recognition. Integrase recognized target DNA asymmetrically: the target DNA upstream of the viral DNA joining site played a much more important role than the downstream target DNA in protein-DNA interaction. The site of transesterification was determined by both the DNA sequence of the viral DNA end and the structure of the branched substrate. Using a series of disintegration substrates with various base modifications, we found that integrase had relaxed structural specificity for the hydroxyl group used in transesterification and could tolerate distortion of the double-helical structure of these DNA substrates.  相似文献   

7.
M Mizuuchi  K Mizuuchi 《Cell》1989,58(2):399-408
Phage Mu transposition is initiated by the Mu DNA strand-transfer reaction, which generates a branched DNA structure that acts as a transposition intermediate. A critical step in this reaction is formation of a special synaptic DNA-protein complex called a plectosome. We find that formation of this complex involves, in addition to a pair of Mu end sequences, a third cis-acting sequence element, the internal activation sequence (IAS). The IAS is specifically recognized by the N-terminal domain of Mu transposase (MuA protein). Neither the N-terminal domain of MuA protein nor the IAS is required for later reaction steps. The IAS overlaps with the sequences to which Mu repressor protein binds in the Mu operator region; the Mu repressor directly inhibits the Mu DNA strand-transfer reaction by interfering with the interaction between MuA protein and the IAS, providing an additional mode of regulation by the repressor.  相似文献   

8.
《Free radical research》2013,47(1):521-529
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

9.
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

10.
E Evans  J Fellows  A Coffer    R D Wood 《The EMBO journal》1997,16(3):625-638
Human XPG nuclease makes the 3' incision during nucleotide excision repair of DNA. The enzyme cleaves model DNA bubble structures specifically near the junction of unpaired DNA with a duplex region. It is not yet known, however, whether an unpaired structure is an intermediate during actual DNA repair. We find here that XPG requires opening of >5 bp for efficient cleavage. To seek direct evidence for formation of an open structure around a lesion in DNA during a nucleotide excision repair reaction in vitro, KMnO4 footprinting experiments were performed on a damaged DNA molecule bearing a uniquely placed cisplatin adduct. An unwound open complex spanning approximately 25 nucleotides was observed that extended to the positions of 5' and 3' incision sites and was dependent on XPA protein and on ATP. Opening during repair occurred prior to strand incision by XPG.  相似文献   

11.
In order to construct an in vitro recombination system of T7 DNA, the reaction products of which resemble those in vivo in structure, T7 DNA-membrane complex which is free from concomitant DNase activity was purified from T7 phage-infected cells. T7-infected cells were lysed with T4 lysozyme/Brij58, and T7 DNA-membrane complex was purified through three successive density gradient centrifugations. The properties of the complex on exposure to defined nucleases and observation of the complex by electron microscopy revealed that in T7 DNA-membrane complex, both ends of a linear T7 DNA are bound with membrane components. A mixture of 32P-labeled T7 DNA-membrane complex and BU-labeled T7 DNA-membrane complex was incubated with T7 exonuclease and T7 DNA-binding protein, and the reaction products with intermediate density were purified. Most of the products were found to have structures similar to that of the recombination intermediate found in T7-infected cells upon electron microscopic examination.  相似文献   

12.
D M Anderson  W R Folk 《Biochemistry》1976,15(5):1022-1030
Iodination of DNA by the reaction originally described by S. L. Commerford ((1971), Biochemistry 10, 1993) is extremely sensitive to the secondary structure of the DNA. Cytidines in denatured simian virus 40 (SV40) DNA react at a slightly slower rate than free cytidine monophosphate; hydrogen-bonded cytidines in SV40 form I DNA are iodinated considerably more slowly; elimination of the negative supercoils in form I DNA by conversion to form II or form III reduces reactivity even further. The residual reactivity of form II or form III duplex DNA is not due to preferential iodination of unpaired cytidines near phosphodiester bond breaks; rather iodination occurs throughout the molecule. Cytidine monophosphate has been used as a model for DNA, to enable spectral measurements of its reaction with iodine and T1C13. At temperatures above 42 degrees C and at pH 5.0, formation of 5-iodocytidine is limited by the rate of formation of an intermediate, probably 5-iodo-6-hydroxydihydrocytidine. At lower temperatures, the conversion of intermediate to product is rate limiting, but can be accelerated by lowering the pH. By appropriate adjustment of pH, or temperature, the formation of intermediate or its conversion to product can be accelerated. Iodination destabilizes the DNA duplex. Iodocytosines in SV40 DNA are preferentially removed by S1 nuclease. Heavily iodinated DNA does not reassociate normally, but DNA with only 5-10% of its cytosines iodinated appears to reassociate with normal kinetics, if duplex formation is measured by hydroxylapatite chromatography. Conditions are described to permit preparation of DNA, which reassociates normally, having a specific activity of 10(8) cpm/mug.  相似文献   

13.
gamma delta resolvase, a transposon-encoded site-specific recombinase, catalyzes the resolution of the cointegrate intermediate of gamma delta transposition. The recombination reaction involves the formation of a catalytic nucleoprotein complex whose structure is determined by specific protein-DNA and protein-protein interactions. We have isolated many resolvase mutants and have identified four that are unable to mediate a subclass of higher order protein-protein interactions necessary for recombination. This mutant phenotype is characterized by an inability to catalyze recombination, a loss of cooperative binding to res DNA, and a failure to induce looping out of the DNA between two resolvase binding sites within res. The amino acid side chains identified by the cooperativity mutants cluster on a surface of the protein that mediates an interaction between resolvase dimers in a crystallographic tetramer. We have therefore identified a region of resolvase that mediates an interdimer protein-protein interaction necessary for the formation of the recombinogenic synaptic intermediate.  相似文献   

14.
Ribonucleotide reductase is an indispensable enzyme for all cells, since it catalyses the biosynthesis of the precursors necessary for both building and repairing DNA. The ribonucleotide reductase class I enzymes, present in all mammals as well as in many prokaryotes and DNA viruses, are composed mostly of two homodimeric proteins, R1 and R2. The reaction involves long-range radical transfer between the two proteins. Here, we present the first crystal structure of a ribonucleotide reductase R1/R2 holocomplex. The biological relevance of this complex is based on the binding of the R2 C terminus in the hydrophobic cleft of R1, an interaction proven to be crucial for enzyme activity, and by the fact that all conserved amino acid residues in R2 are facing the R1 active sites. We suggest that the asymmetric R1/R2 complex observed in the 4A crystal structure of Salmonella typhimurium ribonucleotide reductase represents an intermediate stage in the reaction cycle, and at the moment of reaction the homodimers transiently form a tight symmetric complex.  相似文献   

15.
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.  相似文献   

16.
The base excision repair (BER) pathway for ultraviolet light (UV)-induced cyclobutane pyrimidine dimers is initiated by DNA glycosylases that also possess abasic (AP) site lyase activity. The prototypical enzyme known to catalyze these reactions is the T4 pyrimidine dimer glycosylase (T4-Pdg). The fundamental chemical reactions and the critical amino acids that lead to both glycosyl and phosphodiester bond scission are known. Catalysis proceeds via a protonated imine covalent intermediate between the alpha-amino group of the N-terminal threonine residue and the C1' of the deoxyribose sugar of the 5' pyrimidine at the dimer site. This covalent complex can be trapped as an irreversible, reduced cross-linked DNA-protein complex by incubation with a strong reducing agent. This active site trapping reaction is equally efficient on DNA substrates containing pyrimidine dimers or AP sites. Herein, we report the co-crystal structure of T4-Pdg as a reduced covalent complex with an AP site-containing duplex oligodeoxynucleotide. This high-resolution structure reveals essential precatalytic and catalytic features, including flipping of the nucleotide opposite the AP site, a sharp kink (approximately 66 degrees ) in the DNA at the dimer site and the covalent bond linking the enzyme to the DNA. Superposition of this structure with a previously published co-crystal structure of a catalytically incompetent mutant of T4-Pdg with cyclobutane dimer-containing DNA reveals new insights into the structural requirements and the mechanisms involved in DNA bending, nucleotide flipping and catalytic reaction.  相似文献   

17.
Left-handed Z-DNA binds tightly to Ustilago rec1 protein. The binding reaction is strongly dependent on ATP, but complexes formed are rapidly dissociated by ADP. The parallel between the kinetics of Z-DNA binding and the synaptic pairing reaction leading to paranemic joint molecules suggests that formation of nascent heteroduplex structures in recombination is coupled with formation of left-handed Z-like DNA on the protein. Equilibrium and kinetic studies show that rec1 protein appears to have a strong Z-DNA binding site that binds Z-DNA 75 times tighter than the B form of the DNA. We propose that DNA with a structure approximated best by a left-handed Z-DNA conformation is a key intermediate in homologous pairing promoted by rec1 protein.  相似文献   

18.
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.  相似文献   

19.
The (6-4) photoproduct formed by ultraviolet light is known as an alkali-labile DNA lesion. Strand breaks occur at (6-4) photoproducts when UV-irradiated DNA is treated with hot alkali. We have analyzed the degradation reaction of this photoproduct under alkaline conditions using synthetic oligonucleotides. A tetramer, d(GT(6-4)TC), was prepared, and its degradation in 50 mm KOH at 60 degrees C was monitored by high performance liquid chromatography. A single peak with a UV absorption spectrum similar to that of the starting material was detected after the reaction, and this compound was regarded as an intermediate before the strand break. The formation of this intermediate was compared with intermediates from the degradation of other alkali-labile lesions such as the abasic site, thymine glycol, and 5,6-dihydrothymine. The results strongly suggested that the first step of the alkali degradation of the (6-4) photoproduct was the hydrolysis between the N3 and C4 positions of the 5'-pyrimidine component. Analyses by NMR spectroscopy and mass spectrometry supported the chemical structure of this product. Assays of the complex formation with XPC.HR23B and the translesion synthesis by DNA polymerase eta revealed that the biochemical properties are indistinguishable between the intact and hydrolyzed photoproducts.  相似文献   

20.
Mizuuchi K  Nobbs TJ  Halford SE  Adzuma K  Qin J 《Biochemistry》1999,38(14):4640-4648
A new method was developed for tracking the stereochemical path of enzymatic cleavage of DNA. DNA with a phosphorothioate of known chirality at the scissile bond is cleaved by the enzyme in H218O. The cleavage produces a DNA molecule with the 5'-[16O,18O, S]-thiophosphoryl group, whose chirality depends on whether the cleavage reaction proceeds by a single-step hydrolysis mechanism or by a two-step mechanism involving a protein-DNA covalent intermediate. To determine this chirality, the cleaved DNA is joined to an oligonucleotide by DNA ligase. Given the strict stereochemistry of the DNA ligase reaction, determined here, the original chirality of the phosphorothioate dictates whether the 18O is retained or lost in the ligation product, which can be determined by mass spectrometry. This method has advantages over previous methods in that it is not restricted to particular DNA sequences, requires substantially less material, and avoids purification of the products at intermediate stages in the procedure. The method was validated by confirming that DNA cleavage by the EcoRI restriction endonuclease causes inversion of configuration at the scissile phosphate. It was then applied to the reactions of the SfiI and HpaII endonucleases and the MuA transposase. In all three cases, DNA cleavage proceeded with inversion of configuration, indicating direct hydrolysis of the phosphodiester bond by water as opposed to a reaction involving a covalent enzyme-DNA intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号