首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of pentapeptides, based on Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and modified at the Arg(8) position, was prepared and pharmacologically characterized. Peptides containing either cyanoguanidine or acylguanidine, two substantially less basic arginine surrogates, were found to retain the agonist activity of the parent peptide at both hMC1R and hMC4R. This study unequivocally shows that the positive charge of Arg(8) is not essential for efficient interactions of our pentapeptide with both hMC1R and hMC4R.  相似文献   

2.
A series of MT-II related cyclic peptides, based on potent but non-selective hMC4R agonist (Penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2)) was prepared in which His(6) residue was systematically substituted. Two of the most interesting peptides identified in this study are Penta-c[Asp-5-ClAtc-DPhe-Arg-Trp-Lys]-NH(2) and Penta-c[Asp-5-ClAtc-DPhe-Cit-Trp-Lys]-NH(2) which are potent hMC4R agonists and are either inactive or weak partial agonists (not tested for their antagonist activities) in hMC1R, hMC3R and hMC5R agonist assays.  相似文献   

3.
A series of pentapeptides, based on hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)), was prepared in which either DPhe(7) or Trp(9) residue was systematically substituted. A number of interesting DPhe surrogates (D-Thi, D-3-CF(3)Phe, D-2-Nal and D-3,4-diClPhe) as well as Trp surrogates (2-Nal and Bta) were identified in this study.  相似文献   

4.
alpha-Melanocyte stimulating hormone (alphaMSH), Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), is an endogenous agonist for the melanocortin receptor 1 (MC1R), the receptor found in the skin, several types of immune cells, and other peripheral sites. Three-dimensional models of complexes of this receptor with alphaMSH and its synthetic analog NDP-alphaMSH, Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), have been previously proposed. In those models, the 6-9 segment of the ligand was considered essential for the ligand-receptor interactions. In this study, we probed the role of Trp(9) of NDP-alphaMSH in interactions with hMC1bR. Analogs of NDP-alphaMSH with various amino acids in place of Trp(9) were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4, and 5 (hMC1b,3-5R). Several new compounds displayed high agonist potency at hMC1bR (EC(50) = 0.5-5 nM) and receptor subtype selectivity greater than 2000-fold versus hMC3-5R. The Trp(9) residue of NDP-alphaMSH was determined to be not essential for molecular recognition at hMC1bR.  相似文献   

5.
Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR.  相似文献   

6.
Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.  相似文献   

7.
Twenty three derivatives of the core fragment His(6)-D-Phe(7)-Arg(8)-Trp(9)-NH(2) end-capped with carboxylic and sulfonic acids were synthesized and evaluated at human melanocortin receptors (hMC1, hMC3, and hMC4Rs). The SAR within this series allowed us to map the hMCRs near the His(6) binding site and design a superpotent MC1R agonist, LK-184, Ph(CH(2))(3)CO-His-D-Phe-Arg-Trp-NH(2) (19) with EC(50) 0.01 nM (5 nM at MC3 and MC4Rs).  相似文献   

8.
The melanocortin receptors are involved in several important physiological functions. The potent and enzymatically stable analogues MT-II (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH(2)) and SHU9119 (Ac-Nle-c[Asp-His-DNal(2')-Arg-Trp-Lys]-NH(2)) are important ligands of these receptors but are relatively nonselective. To differentiate between the physiological functions of these receptors, agonists, and antagonists with improved receptor selectivities are needed. We report here analogues of the well-characterized antagonist SHU9119 in which we replaced His(6) with conformationally constrained amino acids. By this structure-activity study we discovered two important compounds, PG-901 (Ac-Nle(4)-c[Asp(5)-Pro(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and PG-911 (Ac-Nle(4)-c[Asp(5)-Hyp(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), characterized to be full agonists at the hMC5R (EC(50) = 0.072 nM and 0.031 nM, respectively), but full antagonists at the hMC3R and the hMC4R. We also demonstrated that the relative stereochemistry of the amino acid at the 6-position is critical for activity, and could play an important role in potency as well as in selectivity for the melanocortin receptors.  相似文献   

9.
Human melanin-concentrating hormone (hMCH) and many of its analogues are potent but nonspecific ligands for human melanin-concentrating hormone receptors 1 and 2 (hMCH-1R and hMCH-2R). To differentiate between the physiological functions of these receptors, selective antagonists are needed. In this study, analogues of Ac-Arg(6)-cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Gly(10)-Arg(11)-Val(12)-Tyr(13)-Arg(14)-Pro(15)-Cys(16))-NH(2), a high affinity but nonselective agonist at hMCH-1R and hMCH-2R, were prepared and tested in binding and functional assays on cells expressing these receptors. In the new analogues, 5-aminovaleric acid (Ava) was incorporated in place of the Leu(9)-Gly(10) and/or Arg(14)-Pro(15) segments of the disulfide ring. Several of these compounds turned out to be high affinity antagonists selective for hMCH-1R. Moreover, even at micromolar concentrations, they were devoid of agonist potency at both hMCH receptors and not effective as hMCH-2R antagonists. For example, peptide 14, Gva(6)- cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Gly(10)-Arg(11)-Val(12)-Tyr(13)-Ava(14,15)-Cys(16))-NH(2), (Gva = 5-guanidinovaleric acid), was a full competitive hMCH-1R antagonist (IC(50) = 14 nM, K(B) = 0.9 nM) with more than 1000-fold selectivity over hMCH-2R. Examination of various compounds with Ava in positions 9,10 and/or 14,15 revealed that the Leu(9)-Gly(10) and Arg(14)-Pro(15) segments of the disulfide ring are the principal structural elements determining hMCH-1R selectivity and ability to act as a hMCH-1R antagonist.  相似文献   

10.
11.
Human melanin-concentrating hormone (hMCH) is a nonselective natural ligand for the human melanin-concentrating hormone receptors: hMCH-1R and hMCH-2R. Similarly, the smaller peptide encompassing the disulfide ring and Arg(6) of hMCH, Ac-Arg(6)-cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Gly(10)-Arg(11)-Val(12)-Tyr(13)-Arg(14)-Pro(15)-Cys(16))-NH(2), Ac-hMCH(6-16)-NH(2), binds to and activates equally well both human MCH receptors present in the brain. To separate the physiological functions of hMCH-1R from those of hMCH-2R, new potent and hMCH-1R selective agonists are necessary. In the present study, analogs of Ac-hMCH(6-16)-NH(2) were prepared and tested in binding and functional assays on cells expressing the MCH receptors. In these peptides, Arg in position 6 was replaced with various d-amino acids and/or Gly in position 10 was substituted with various L-amino acids. Several of the new compounds turned out to be potent agonists at hMCH-1R with improved selectivity over hMCH-2R. For example, peptide 26 with d-Arg in place of L-Arg in position 6 and Asn in place of Gly in position 10, Ac-dArg(6)-cyclo(S-S)(Cys(7)-Met(8)-Leu(9)-Asn(10)-Arg(11)-Val(12)-Tyr(13)-Arg(14)-Pro(15)-Cys(16))-NH(2), was a potent hMCH-1R agonist (IC(50) = 0.5 nm, EC(50) = 47 nm) with more than 200-fold selectivity with respect to hMCH-2R. Apparently, these structural changes in positions 6 and 10 results in peptide conformations that allow for efficient interactions with hMCH-1R but are unfavorable for molecular recognition at hMCH-2R.  相似文献   

12.
To elucidate the molecular basis for the interaction of ligands with the human melanocortin-4 receptor (hMC4R), agonist structure-activity studies and receptor point mutagenesis were performed. Structure-activity studies of [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) identified D-Phe7-Arg8-Trp9 as the minimal NDP-MSH fragment that possesses full agonist efficacy at the hMC4R. In an effort to identify receptor residues that might interact with amino acids in this tripeptide sequence 24 hMC4R transmembrane (TM) residues were mutated (the rationale for choosing specific receptor residues for mutation is outlined in the Results section). Mutation of TM3 residues D122 and D126 and TM6 residues F261 and H264 decreased the binding affinity of NDP-MSH 5-fold or greater, thereby identifying these receptor residues as sites potentially involved in the sought after ligand-receptor interactions. By examination of the binding affinities and potencies of substituted NDP-MSH peptides at receptor mutants, evidence was found that core melanocortin peptide residue Arg8 interacts at a molecular level with hMC4R TM3 residue D122. TM3 mutations were also observed to decrease the binding of hMC4R antagonists. Notably, mutation of TM3 residue D126 to alanine decreased the binding affinity of AGRP (87-132), a C-terminal derivative of the endogenous melanocortin antagonist, 8-fold, and simultaneous mutations D122A/D126A completely abolished AGRP (87-132) binding. In addition, mutation of TM3 residue D122 or D126 decreased the binding affinity of hMC4R antagonist SHU 9119. These results provide further insight into the molecular determinants of hMC4R ligand binding.  相似文献   

13.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

14.
Tryptase from rat skin: purification and properties   总被引:2,自引:0,他引:2  
V J Braganza  W H Simmons 《Biochemistry》1991,30(20):4997-5007
Tryptase was purified 13,000-fold to apparent homogeneity from rat skin. The two-step procedure involved ammonium sulfate fractionation of the initial extract followed by combined sequential affinity chromatography on agarose-glycyl-glycyl-p-aminobenzamidine and concanavalin A-agarose. The purified enzyme had a specific activity toward N-benzoylarginine ethyl ester (BzArgOEt) of 170 mumol/min mg-1 and was obtained in a yield of 28% as determined by the specific substrate, H-D-Ile-Pro-Arg-p-nitroanilide. Rat skin tryptase was thermal labile, losing 50% of its activity when preincubated for 30 min at 30 degrees C. The presence of NaCl (1 M) improved thermal stability and was necessary for long-term storage. Heparin did not stabilize the enzyme against thermal denaturation, and heparin-agarose failed to bind the enzyme. Rat skin tryptase was inhibited by diisopropylphosphofluoridate, antipain, leupeptin, and aprotinin but not by alpha 1-antitrypsin, ovomucoid, or soybean or lima bean trypsin inhibitors. Substrate specificity studies using a series of tri- and tetrapeptidyl-p-nitroanilide and peptidyl-7-amino-4-methylcoumarin substrates demonstrated the existence of an extended substrate binding site. Rat skin tryptase hydrolyzed [Arg8]vasopressin, neurotensin, and the oxidized B-chain of insulin at the -Arg8-Gly9-NH2, -Arg8-Arg9-, and -Arg22-Gly23-bonds, respectively. No general proteinase activity was observed toward casein, hemoglobin, or azocoll. Rat skin tryptase had a Mr of 145,000 by gel filtration. The subunit Mr was either 34,000 or 30,000 depending on the electrophoretic technique used. Treatment of the enzyme with peptide N-glycosidase F (N-glycanase) decreased the subunit Mr by 4000. The enzyme exhibited multiple isoelectric forms (pI's of 4.5-4.9). Rat skin tryptase was found to be related statistically to other tryptases on the basis of amino acid composition. The N-terminal amino acid sequence was Ile1-Val2-Gly3-Gly4-Gln5-Glu6-Ala7-+ ++Ser8-Gly9-Asn10-Lys11-Trp12-Pro13- Trp14- Gln15-Val16-Ser17-Leu18-Arg19-Val20- --21-Asp-22Thr23-Tyr24-Typ25-, with a putative glycosylation site at residue 21. This sequence was 72-80% homologous with the N-terminus of other tryptases but only 40% homologous with that of bovine trypsin.  相似文献   

15.
In order to define which structure of alpha-melanocyte-stimulating hormone (MSH) analogues plays a critical role for ligand-receptor interaction and selectivity, we analysed receptor-binding and cAMP-generating activity in Chinese hamster ovary cell lines stably transfected with rMC3R and hMC4R, as well as the NMR structures of chemically synthesized alpha-MSH analogues. Compared with [Ahx4]alpha-MSH, the linear MTII designated as alpha-MSH-ND revealed a preference for the MC4R, whereas its IC50 and EC50 values were comparable to those of MTII reported previously. Truncation of Ahx4 and Asp5 of alpha-MSH-ND remarkably decreased the receptor-binding and cAMP-generating activity. Meanwhile, maximum cAMP-generating activity was observed at a higher concentration (10(-5) M) of alpha-MSH-ND(6-10), and MC4R preference was changed into MC3R preference. In contrast, [Gln6]alpha-MSH-ND(6-10) lost its cAMP-generating activity almost completely, even though it bound to both receptors. Whereas the solution conformation of alpha-MSH-ND revealed a stable type I beta-turn structure, [Gln6]alpha-MSH-ND(6-10) revealed a tight gamma-turn composed of Gln6-D-Phe7-Arg8. Replacement of the His6 residue of alpha-MSH-ND by Gln, Asn, Arg or Lys decreased not only the receptor binding, but also the cAMP-generating activity in both the MC3R and the MC4R. The structure of [Gln6]alpha-MSH-ND exhibited a stable type I' beta-turn comprising Asp5, Gln6, D-Phe7 and Arg8. [Lys6]alpha-MSH-ND showed a greatly reduced binding affinity and cAMP-generating activity with the loss of MC4R selectivity. In NMR studies, [Lys6]alpha-MSH-ND also demonstrated a gamma-turn conformation around Lys6-DPhe7-Arg8. From the above results, we conclude that a type I beta-turn conformation comprising the residues Asp5-His6-(D-Phe7)-Arg8 was important for receptor binding and activation, as well as the selectivity of MSH analogues.  相似文献   

16.
Grieco P  Cai M  Mayorov AV  Trivedi D  Hruby VJ 《Peptides》2006,27(2):472-481
Cyclic melanotropin peptides, designed with an aromatic amino acid substitution at the N-terminal position of the MT-II-type scaffold, were prepared by solid-phase peptide synthesis and evaluated for their ability to bind to and activate human melanocortin-1, -3, -4, and -5 receptors. The structure-activity studies of these MT-II analogues have identified a selective antagonist at the hMC4R (H-Phe-c[Asp-Pro-d-Nal(2')-Arg-Trp-Gly-Lys]-NH(2), pA(2)=8.7), a selective partial agonist at the hMC4R (H-d-Nal(2')-c[Asp-Pro-d-Phe-Arg-Trp-Gly-Lys]-NH(2), IC(50)=11nM, EC(50)=56nM), and a selective partial agonist at the hMC3R (H-d-Phe-c[Asp-Pro-d-Phe-Arg-Trp-Lys]-NH(2), IC(50)=3.7nM, EC(50)=4.9nM). Aromatic amino acid substitution at the N-terminus in conjuction with the expansion of the 23-membered cyclic lactam MT-II scaffold to a 26-membered scaffold by addition of a Gly residue in position 10 leads to melanotropin peptides with enhanced receptor selectivity.  相似文献   

17.
Linear pentapeptides (Penta-cis-Apc-DPhe-Arg-Trp-Gly-NH2) containing 1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc) and substituted Apc are potent hMC4R agonists and they are inactive or weakly active in hMC1R, hMC3R, and hMC5R agonist assays. This study, together with our earlier report on 5-BrAtc, demonstrated the importance of replacing His6 with phenyl-containing rigid templates in achieving good hMC4R agonist potency and selectivity against hMC1R in linear pentapeptides.  相似文献   

18.
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists.  相似文献   

19.
Theoretical conformational analysis was used to study the spatial structure and conformational properties of the bovine adrenal medulla dodecapeptide BAM-12P (Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12). Twenty-three low-energy conformations of the BAM-12P backbone were shown to represent the spatial structure of the peptide. The inverse structural problem was solved, and synthetic analogues of BAM-12P were proposed, the spatial structures of which correspond to a set of low-energy potentially physiologically active conformations of the natural dodecapeptide. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

20.
Nonpeptide antagonists for kinin receptors   总被引:1,自引:0,他引:1  
Kinins are a family of small peptides acting as mediators of inflammation and pain in the peripheral and central nervous system. The two main 'kinins' in mammals are the nonapeptide bradykinin (BK, Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) and the decapeptide kallidin (KD, [Lys0]-BK, Lys1-Arg2-Pro3-Pro4-Gly5-Phe6-Ser7-Pro8-Phe9- Arg10). Their biological actions are mediated by two distinct receptors, termed B1 and B2. Kinin B and B2 receptor antagonists may be useful drugs endowed with analgesic and anti-inflammatory properties, with potential use in asthma, allergic rhinitis and other diseases. The first nonpeptide kinin B2 receptor antagonist, WIN 64338, was reported in 1993. Despite its low selectivity, the compound provided a reference for pharmacological and modeling studies. Several quinoline and imidazo[1,2-a]pyridine derivatives have been shown by Fujisawa to possess high affinity and selectivity for kinin B2 receptors. Among them, FR 173657 displayed excellent in vitro and in vivo antagonistic activity, while FR 190997 emerged as the first nonpeptide agonist for B2 receptor. Two structurally related Fournier compounds were recently published. Other kinin B2 receptor ligands were obtained by rational design, through library screening or from natural sources. The only example of a nonpeptide kinin B1 receptor ligand has been reported in a patent by Sanofi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号