首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some effects of aging processes on the neurochemical features of central transmitter-identified neuronal populations have been investigated by means of immunocytochemistry and receptor autoradiographic techniques coupled with image analysis. A selective decrease of tyrosine hydroxylase immunoreactivity in the ventrolateral region of the arcuate nucleus in aged rats was observed. The level and turnover (recovery after irreversible blockade of monoamine receptors with the peptide coupling agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) of 2-adrenergic ([3H]paraaminoclonidine binding) and D2 dopamine ([3H]spiperone binding) receptors were reduced in most regions of the rat brain. Peptide receptors showed a more complex pattern of change, since while μ opiate receptors (preferentially labeled with [3H]etorphine binding) were reduced in the old animals, δ opiate ([3H]DSTLenkephalin binding) receptors were affected only in certain areas. The effect of irreversible blockade of monoamine receptors on μ and δ opiate receptors was also studied in young adult and aged rats. A δ but not μ opiate receptor up-regulation was observed after monoamine receptor blockade in the young adult animals. This effect was greatly reduced in the n. caudatus-putamen, n. accumbens and tuberculum olfactorium of the old animals.  相似文献   

2.
The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in regulating steroid synthesis and transport. We report here the effects of androgenic/anabolic steroids (AAS) on the binding of the PBR-specific ligand [3H] PK11195 to male rat brain cortical synaptoneurosomes. Two synthetic AAS, stanozolol and 17β-testosterone cypionate (17β-cyp), significantly inhibited 1 nM [3H] PK11195 binding at concentrations greater than 5 and 25 μM, respectively. Stanozolol was the most effective inhibitor, reducing [3H] PK11195 binding by up to 75%, compared to only 40% inhibition by 17β-cyp, at 50 μM AAS concentration. Two other AAS, 17-methyltestosterone and nortestosterone decanoate, were incapable of inhibiting [3H] PK11195 binding at concentrations up to 50 μM. On the basis of Scatchard/Rosenthal analysis, [3H] PK11195 binds to two classes of binding sites, and the inhibition of [3H] PK11195 binding by stanozolol appears to be allosteric, primarily reducing binding to the higher affinity [3H] PK11195 binding site. These results, in combination with earlier studies indicating the direct effects of AAS on the function of additional central nervous system receptor complexes, suggest that the behavioral and psychological effects of AAS result from the interactions of AAS with multiple regulatory systems in the brain.  相似文献   

3.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

4.
Opiate binding sites in five brain regions were labeled with the μ and δ markers, 3H-morphine and 3H-[D-Ala2,D-leu5]enkephalin, respectively. The highest densities of both 3H-morphine and 3H-DADLE labeled sites are found in striatum and frontal cortex. Hypothalamus and midbrain contain predominantly 3H-morphine labeled sites. The selectivity of the opioid peptides [D-Ala2,D-leu5]enkephalin, β-endorphin and dynorphin(1–13) for the two opiate sites was investigated by comparing the potency of these unlabeled compounds against the μ and δ markers in different brain regions. This determination has the effect of controlling for the breakdown of peptides within each region. While the enkephalin analogue shows a preference for the δ binding site and β-endorphin is more nearly equipotent towards the two binding sites, dynorphin(1–13) shows a high affinity and selective preference for the μ binding site over the δ site. The potency of the opioid peptides in displacing the μ and δ markers varies from region to region according to the relative densities of the two opiate binding site populations.  相似文献   

5.
Bhargava, H. N., V. M. Villar, J. Cortijo and E. J. Morcillo. Binding of [3H][D-Ala2, MePhe4, Gly-ol5]enkephalin, [3H][D-Pen2, D-Pen5]enkephalin, and [3H]U-69,593 to airway and pulmonary tissues of normal and sensitized rats. Peptides 18(10) 1603–1608, 1997.—The role of endogenous opioid peptides in the regulation of bronchomotor tone, as well as in the pathophysiology of asthma is uncertain. We have studied the binding of highly selective [3H]labeled ligands of μ-([D-Ala2, MePhe4, Gly-ol5]enkephalin; DAMGO), δ ([D-Pen2, D-Pen5]enkephalin; DPDPE), and κ-(U-69,593) opioid receptors to membranes of trachea, main bronchus, lung parenchyma and pulmonary artery obtained from normal (unsensitized) and actively IgE-sensitized rats acutely challenged with the specific antigen. [3H]DAMGO, [3H]DPDPE and [3H]U-69,593 bound to membranes of normal and sensitized tissues at a saturable, single high-affinity site. The rank order of receptor densities in normal tissues was δ- ≥ κ- ≥ μ-, with lung parenchyma exhibiting the greatest binding capacity for δ- and μ- receptors compared to the other regions examined. The Kd values showed small differences between ligands and regions tested. The μ- and δ-opioid receptor densities were decreased in sensitized main bronchus and lung parenchyma, respectively, compared to normal tissues. By contrast, κ-opioid receptor density was augmented in sensitized lung parenchyma but an increase in Kd values was also observed. These differential changes in the density and affinity of opioid receptor types may be related to alterations in endogenous opioid peptides during the process of sensitization.  相似文献   

6.
WAY–100635 is the first selective, silent 5–HT1A (5-hydroxytryptamine1A, serotonin-1A) receptor antagonist. We have investigated the use of [3H]WAY–100635 as a quantitative autoradiographic ligand in post-mortem human hippocampus, raphe and four cortical regions, and compared it with the 5–HT1A receptor agonist, [3H]8–OH–DPAT. Saturation studies showed an average Kd for [3H]WAY–100635 binding in hippocampus of 1.1 nM. The regional and laminar distributions of [3H]WAY–100635 binding and [3H]8–OH–DPAT binding were similar. The density of [3H]WAY–100635 binding sites was 60–70% more than that of [3H]8–OH–DPAT in all areas examined except the cingulate gyrus where it was 165% higher. [3H]WAY–100635 binding was robust and was not affected by the post-mortem interval, freezer storage time or brain pH (agonal state). Using [3H]WAY–100635, we confirmed an increase of 5–HT1A receptor binding sites in the frontal cortex in schizophrenia, previously demonstrated with [3H]8–OH–DPAT. Compared to [3H]8–OH–DPAT, [3H]WAY–100635 has two advantages: it has a higher selectivity and affinity for the 5–HT1A receptor, and it recognizes 5–HT1A receptors whether or not they are coupled to a G-protein, whereas [3H]8–OH–DPAT primarily detects coupled receptors. Given these considerations, the [3H]WAY–100635 binding data in schizophrenia clarify two points. First, they indicate that the elevated [3H]8–OH–DPAT binding seen in the same cases is attributable to an increase of 5–HT1A receptors rather than any other binding site. Second, the enhanced [3H]8–OH–DPAT binding in schizophrenia reflects an increased density of 5–HT1A receptors, not an increased percentage of 5–HT1A receptors which are G-protein-coupled. We conclude that [3H]WAY–100635 is a valuable autoradiographic ligand for the qualitative and quantitative study of 5–HT1A receptors in the human brain.  相似文献   

7.
[3H]Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that [3H]NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited [3H]NT binding with the following potencies (IC50): NT 8–13 (0.4 nM), NT 1–13 (4 nM), NT 9–13 (130 nM), NT 1–11, NT 1–8 (>100 μM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.  相似文献   

8.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

9.
The present study was undertaken to characterize the binding activities of propiverine and its N-oxide metabolites (1-methyl-4-piperidyl diphenylpropoxyacetate N-oxide: P-4(N → O), 1-methyl-4-piperidyl benzilate N-oxide: DPr-P-4(N → O)) toward L-type calcium channel antagonist receptors in the rat bladder and brain. Propiverine and P-4(N → O) inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder in a concentration-dependent manner. Compared with that for propiverine, the Ki value for P-4(N → O) in the bladder was significantly greater. Scatchard analysis has revealed that propiverine increased significantly Kd values for bladder (+)-[3H]PN 200–110 binding. DPr-P-4(N → O) had little inhibitory effects on the bladder (+)-[3H]PN 200–110 binding. Oxybutynin and N-desethyl-oxybutynin (DEOB) also inhibited specific (+)-[3H]PN 200–110 binding in the rat bladder. Propiverine, oxybutynin and their metabolites inhibited specific [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding in the rat bladder. The ratios of Ki values for (+)-[3H]PN 200–110 to [3H]NMS were markedly smaller for propiverine and P-4(N → O) than oxybutynin and DEOB. Propiverine and P-4(N → O) inhibited specific binding of (+)-[3H]PN 200–110, [3H]diltiazem and [3H]verapamil in the rat cerebral cortex in a concentration-dependent manner. The Ki values of propiverine and P-4(N → O) for [3H]diltiazem were significantly smaller than those for (+)-[3H]PN 200–110 and [3H]verapamil. Further, their Ki values for [3H]verapamil were significantly smaller than those for (+)-[3H]PN 200–110. The Ki values of propiverine for each radioligand in the cerebral cortex were significantly (P < 0.05) smaller than those of P-4(N → O). In conclusion, the present study has shown that propiverine and P-4(N → O) exert a significant binding activity of L-type calcium channel antagonist receptors in the bladder and these effects may be pharmacologically relevant in the treatment of overactive bladder after oral administration of propiverine.  相似文献   

10.
The potency of a series of opioid and non-opioid psychotomimetic drugs to inhibit the specific binding of [3H]PCP and ( + )-[3H]SKF-10,047 to rat cerebral cortical membranes was examined. ( + )-PCMP, the 3-methylpiperidino analog of PCP, was a potent inhibitor of the specific binding of both ligands. All of the other 12 compounds examined, however, displayed a 3-277-fold selectivity for either [3H]PCP or (+)-[3H]SKF-10,047 binding. These results suggest that although these opioid and non-opioid psychotomimetics bind to both sites, most have significantly different affinities. The binding sites for [3H]PCP appear to be distinct from the ‘sigma’ binding sites labeled with (+)-[3H]SKF-10,047.

SKF-10,047 Sigma receptor Phencyclidine Phencyclidine receptor Psychotomimetic activity  相似文献   


11.
Recent studies from our laboratory resolved two subtypes of the κ2 binding site, termed κ2a and κ2b, using guinea pig, rat, and human brain membranes depleted of μ and δ receptors by pretreatment with the site-directed acylating agents BIT (μ-selective) and FIT (δ-selective). 6β-Iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5-epoxymorphinan (IOXY), an opioid antagonist that has high affinity for κ2 sites, was radioiodinated to maximum specific activity (2200 Ci/mmol) and purified by high pressure liquid chromotography and used to characterize multiple κ2 binding sites. The results indicated that [125I]IOXY, like [3H]bremazocine, selectively labels κ2 binding sites in rat brain membranes pretreated with BIT and FIT. Using 100 nM [ -Ala2-MePhe4,Gly-ol5]enkephalin to block [125I]IOXY binding to the κ2b site, two subtypes of the κ2a binding site were resolved, both in the absence and presence of 50 μM 5′-guanylyimidodiphosphate. Viewed collectively, these results provide further evidence for heterogeneity of the κ opioid receptor, which may provide new targets for drug design, synthesis, and therapeutics.  相似文献   

12.
Rat brain guanosine binding sites were studied by (i) a pharmacological approach to confirm the hypothesis of the existence of specific G-coupled receptors for guanosine (1) and, for the first time, delineate a structure–activity relationship for a series of guanosine derivatives; (ii) a molecular modelling approach to design a pseudo-receptor construction. GTP and its non-hydrolysable analogue Gpp[NH]p decreased [3H]-guanosine binding to rat brain membranes. Gpp[NH]p 30 and 100 μM induced a dose-dependent decrease in [3H]-guanosine affinity and PTX pretreatment of rat brain membranes caused a 50% reduction in binding. In slices from rat brain cortex, guanosine induced a dose-dependent increase in intracellular cAMP. This increase is specific for guanosine, since neither the pretreatment with adenosine deaminase nor the A1 and A2 adenosine receptor antagonists were able to modify the guanosine-induced cAMP accumulation. The structure–activity relationship showed that the potency order of the best substances able to displace 50 nM [3H]-guanosine was guanosine (1)=6-thioguanosine (3)>8-bromoguanosine (4)>inosine (10)>7-methylguanosine (6)=3′-deoxyguanosine (9)>2′-deoxyguanosine (8)=guanine (11)=6-thioguanine (12)>>N2-methylguanosine (5). The competition studies confirmed that [3H]-guanosine site was distinct from the well characterized ATP and adenosine binding sites. The present results are rationalized in terms of a putative pseudo-receptor construct which includes all the relevant physicochemical interaction between guanosine analogues and their putative binding sites. This construct will be useful for the in silico screening of compound libraries in search for new potent and structurally diverse pharmacological tools.  相似文献   

13.
In the mammalian brain, the (NMDA) subtype of glutamate receptor is coupled to a cation channel and a strychnine-insensitive glycine receptor. The present paper demonstrates the presence of NMDA receptor-coupled strychnine-insensitive glycine receptors in embryonic chick retina. Both glycine and 1-aminocyclopropanecarboxylic acid (ACPC) exhibited similar potencies (271 ± 39 vs 247 ± 39 nM, respectively) as inhibitors of strychnine-insensitive [3H]glycine binding to retinal membranes. Moreover, glycine and ACPC enhanced [3H]MK-801 binding to sites within the NMDA-coupled cation channel in retinal membranes with potencies comparable to those reported in rat brain. While the potency of ACPC was significantly higher than glycine (EC50 54±12 vs 256±57 nM, P < 0.02) in this measure, there were no significant differences in the maximum enhancement (efficacy) of [3H]MK-801 binding by these compounds. Since glycine appears to be required for the operation of NMDA-coupled cation channels, we examined the effects of glycine and ACPC on NMDA-induced acute excitotoxicity in the 14-day embryonic chick retina. Histological evaluation of retina revealed that either ACPC (10–100 μM) or glycine (200 μM) attenuated NMDA- induced (200 μM) retinal damage, and a combination of these agents produced an enhanced protection against acute NMDA toxicity. ACPC (100 μM), but not MK-801 (1 μM) also afforded a modest protection against kainate-induced (25 μM) retinal damage. These findings demonstrate that while strychnine-insensitive glycine receptors are present in embryonic chick retina, occupation of these sites does not augment the cytotoxic actions of NMDA. Moreover, the ability of ACPC and glycine to attenuate NMDA-induced cytotoxicity does not appear to be mediated through occupation of these sites.  相似文献   

14.
The laminar distribution of 1-, 2- and β-adrenoreceptors was studied in the visual cortex of adult rat together with an investigation of noradrenaline uptake sites. The different layers of the visual cortex were separated by cutting serial cryostat sections and binding studies were performed in slide-mounted tissue sections of 10μm thickness collected from one individual cortical layer. [3H]desipramine binding, assumed to label noradrenaline uptake sites, was found to be highest in layer I by about 37%, whereas binding in the remaining layers was uniformly distributed. The laminar distribution of the 1- and 2-adrenoreceptors studied using [3H]prazosin and [3H]clonidine as radioligands, was similar to that of the noradrenaline uptake sites: markedly higher binding was detectable in layer I compared to the remaining layers. In contrast, the density of β-adrenoreceptors, as revealed by [3H]dihydroalprenolol binding, was highest in layers I and IV, followed by layer II/III, (58% of that in layer I and IV). Lowest binding was observed in layers V and VI (36%). The similarity in laminar distributions of -adrenoreceptors and noradrenaline uptake sites suggests a close correlation of receptor localization and fibre termination, whereas the localization of β-adrenoreceptors cannot be easily related to the pattern of noradrenergic fibres and terminals.  相似文献   

15.
The distribution and the pharmacological properties of the binding of the benzodiazepine receptor antagonist [3H]-Ro 15–1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H imidazol [1,5-a] 1,4 benzodiazepine) were compared in some brain membranes of the saltwater teleost fish, Mullus surmuletus: only a single population of [3H]-Ro 15–1788 binding sites was detected. The binding was saturable and reversible with a high affinity, revealing a significant population of binding sites (Kd value of 2.1 ± 0.2 nM and Bmax value of 1400-900 fmol mg−1 of protein, depending on fish length). The highest concentration of benzodiazepine recognition sites labelled with [3H]-Ro 15–1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. In order to explore behavioural selectivity as a consequence of multiple receptor subtypes, six benzodiazepine receptor ligands, flunitrazepam (5-(2-fluoro-phenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepine-2-one), alpidem, (N,N-dipropyl-6-chloro-2-(4-chlorophenyl) imidazo [1,2-a] pyridine-3-acetamide) zolpidem {N,N,6, trimethyl-2-(4-methyl-phenyl) imidazo [1,2-a] pyridine-3-acetamide hemitartrate}, methyl β carboline-3-carboxylate (βCCM), Ro 15–1788 and Ro 5–4864 (4′-chlorodiazepam), were tested in vitro by binding of [3H]-Ro 15–1788 to membrane preparations from various brain areas of Mullus surmuletus. Displacement studies showed a similar rank order of efficacy of various unlabelled ligands. In all regions of the brain and in the spinal cord, GABA potentiate [3H]-flunitrazepam binding in a similar order, suggesting that the BDZ recognition sites are part of the GABAA receptor structure. These results suggest that central-type benzodiazepine receptors are present in one class of benzodiazepine binding sites in the saltwater teleost fish brain of Mullus surmuletus (type I-like). Here we report initial evidence of homogeneity of subtypes of central benzodiazepine receptors in the spinal cord of the saltwater teleost fish, Mullus surmuletus.  相似文献   

16.
The interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with different nicotinic acetylcholine receptor (nAChR) subtypes was studied in cell lines and rat cortex. MPA showed an affinity (Ki = 1.21 nM) which was higher than anatoxin-a > (−)-nicotine > (+)-[R]nornicotine > (−)-[S]nornicotine > and (+)-nicotine, but lower than cytisine (Ki = 0.46 nM) in competing for (−)-[3H]nicotine binding in M10 cells, which stably express the recombinant 4β2 nAChR subtype. A one-binding site model was observed in all competing experiments between (−)-[3H]nicotine binding and each of the agonists studied in M10 cells. MPA showed a 13-fold higher affinity for (−)-[3H]nicotine binding sites compared to the [3H]epibatidine binding sites in rat cortical membranes. In human neuroblastoma SH-SY5Y cells, which predominantly express the 3 nAChR subunit mRNA, MPA displaced [3H]epibatidine binding from a single population of the binding sites with an affinity in the same nM range as that observed MPA in displacing [3H]epibatidine binding in rat cortical membranes. Chronic treatment of M10 cells with MPA significantly up-regulated the number of (−)-[3H]nicotine binding sites in a concentration dependent manner. Thus MPA appears to have higher affinity to 4-subunit containing receptor subtype than 3-subunit containing receptor subtype of nAChRs. Furthermore MPA binds to 4β2 receptor subtype with higher affinity than (−)-nicotine and behaves, opposite to cytisine, as a full agonist in up-regulating the number of nAChRs. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

17.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N′-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 μM and an IC50 of 12.17 μM upon addition of 100 μM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

18.
Presynaptic modulation by opioids of electrically-evoked neurotransmitter release from superfused rat amygdala slices prelabelled with [3H]noradrenaline (NA) and [14C]choline was examined. Both [3H]NA and [14C]acetylcholine release were strongly inhibited by morphine, the mixed δ/μ-receptor agonist [ -Ala2, -Leu5]enkephalin (DADLE) and the highly selective μ-agonist [ -Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO), whereas the highly selective δ-agonist [ -Pen2, -Pen5]enkephalin and the κ-agonist bremazocine were without effect. The inhibitory effects were potently antagonized by naloxone but not by the selective δ-receptor antagonist fentanylisothiocyanate. When the selective uptake inhibitor desipramine was used to prevent uptake of [3H]NA into noradrenergic nerve terminals, but sparing the uptake into dopaminergic nerve terminals, the electrically evoked release of tritium was strongly inhibited by bremazocine but not by DADLE or DAMGO.

The data indicate, that in the amygdala transmitter release from dopaminergic nerve fibres is inhibited only via activation of κ-receptors, whereas transmitter release from noradrenergic and cholinergic nerve fibers is subjected to inhibition by opioids via activation of μ-receptors only. Regional differences and similarities of modulation of neurotransmitter release by opioids in the rat brain are briefly discussed.  相似文献   


19.
Age-related alterations in major neurotransmitter receptors and voltage dependent calcium channels were analyzed by receptor autoradiography in the gerbil brain. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA), [3H]muscimol, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 were used to label muscarinic acetylcholine receptors, adenosine A1 receptors, γ-aminobutyric acidA (GABAA) receptors, (NMDA) receptors, dopamine D1 receptors, opioid receptors, and voltage dependent calcium channels, respectively. In middle-aged gerbils (16 months old), the hippocampus exhibited a significant elevation in [3H]QNB, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 binding, whereas [3H]CHA and [3H]muscimol binding showed a significant reduction in this area, compared with that of young animals (1 month). On the other hand, the cerebellum showed a significant alteration in [3H]QNB, [3H]CHA, and [3H]naloxone binding and the striatum also exhibited a significant alteration in [3H]SCH 23390 and [3H]CHA binding in middle-aged gerbils. The neocortex showed a significant elevation only in [3H]CHA binding in middle-aged animals. The nucleus accumbens and thalamus also showed a significant alteration only in [3H]muscimol binding. However, the hypothalamus and substantia nigra exhibited no significant alteration in these bindings in middle-aged gerbils. These results demonstrate the age-related alterations of various neurotransmitter receptors and voltage dependent calcium channels in most brain regions. Furthermore, they suggest that the hippocampus is most susceptible to aging processes and is altered at an early stage of senescence.  相似文献   

20.
The binding of [3H]proctolin to oviduct membranes has been analyzed to investigate the nature of proctolin binding sites in the oviduct. Proctolin binding was found to be time dependent, proportional to concentration of membrane protein, saturable, specific and reversible. Two apparent proctolin binding sites were recognized. The first had a Kd of 400 ± 82 nM and a Bmax of 23.7 ± 6.7 pmol/mg protein. The second had a Kd of 2.4 ± 0.2 μM and a Bmax of 96.3 ± 16.7 pmo/mg protein.

Binding was specific in thatcompetition experiments with a wide range of peptides showed that only Arg-Tyr-Leu-Pro-Ala was an effective competitor at μM concentrations. All other peptides examined weekly reduced proctolin binding at concentrations above 50 μM. Certain peptides were found to potentiate [3]pproctolin binding at low μM concentrations (1–10 μM) and to inhibit proctolin binding at higher concentrations. The significance of these findings is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号