首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex.  相似文献   

2.
Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro.  相似文献   

3.
ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ~200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity.  相似文献   

4.
ADP-ribosylation factor 1 (ARF1) is a 20-kDa guanine nucleotide-binding protein involved in vesicular trafficking. Conversion of inactive ARF-GDP to active ARF-GTP is catalyzed by guanine nucleotide exchange proteins such as cytohesin-1. Cytohesin-1 and its Sec7 domain (C-1Sec7) exhibit guanine nucleotide exchange protein activity with ARF1 but not ARF-like protein 1 (ARL1), which is 57% identical in amino acid sequence. With chimeric proteins composed of ARF1 (F) and ARL1 (L) sequences we identified three structural elements responsible for this specificity. Cytohesin-1 increased [35S]guanosine 5'-(gamma-thio)triphosphate binding to L28/F (first 28 residues of L, remainder F) and to a much lesser extent F139/L, and mut13F139/L (F139/L with random sequence in the first 13 positions) but not Delta13ARF1 that lacks the first 13 amino acids; therefore, a nonspecific ARF N terminus was required for cytohesin-1 action. The N terminus was not, however, required for that of C-1Sec7. Both C-1Sec7 and cytohesin-1 effectively released guanosine 5'-(gamma-thio)triphosphate from ARF1, but only C-1Sec7 displaced the nonhydrolyzable GTP analog bound to mut13F139/L, again indicating that structure in addition to the Sec7 domain is involved in cytohesin-1 interaction. Some element(s) of the C-terminal region is also involved, because replacement of the last 42 amino acids with ARL sequence in F139L decreased markedly the interaction with cytohesin-1. Participation of both termini is consistent with the crystallographic structure of ARF in which the two terminal alpha-helices are in close proximity. ARF1 residues 28-50 are also important in the interaction with cytohesin-1; replacement of Lys-38 with Gln, the corresponding residue in ARL1, abolished the ability to serve as substrate for cytohesin-1 or C-1Sec7. These studies have defined multiple structural elements in ARF1, including switch 1 and the N and C termini, that participate in functional interactions with cytohesin-1 (or its catalytic domain C-1Sec7), which were not apparent from crystallographic analysis.  相似文献   

5.
Guanine nucleotide exchange factors (GEFs), which activate small GTP-binding proteins (SMG) by stimulating their GDP/GTP exchange, are emerging as candidate targets for the inhibition of cellular pathways involved in diseases. However, their specific inhibition by competitive inhibitors is challenging, because GEF and SMG families comprise highly similar members. Nature shows us an alternative strategy called interfacial inhibition, exemplified by Brefeldin A (BFA). BFA inhibits the activation of Arf1 by its GEFs in vivo by stabilizing an abortive complex between Arf-GDP and the catalytic Sec7 domain of some of its GEFs. Here we characterize the specificity of BFA toward wild-type (ARNO and BIG1) and mutant Sec7 domains and toward class I, II, and III Arfs. We find that BFA sensitivity of the exchange reaction depends on the nature of both the Sec7 domain and the Arf protein. A single Phe/Tyr substitution is sufficient to achieve BFA sensitivity of the Sec7 domain, which is supported by our characterization of brefeldin C (BFC), a BFA analog that cannot interact with the Tyr residue, and by free energy computations. We further show that Arf1 and Arf5, but not Arf6, are BFA-sensitive, despite their having every BFA-interacting residue in common. Analysis of Arf6 mutants points to the dynamics of the interswitch, which is involved in membrane-to-nucleotide signal propagation, as contributing to, although not sufficient for, BFA sensitivity. Altogether, our results reveal the Tyr/Phe substitution as a novel tool for monitoring BFA sensitivity of cellular ArfGEFs and document the exquisite and dual specificity that can be achieved by an interfacial inhibitor.  相似文献   

6.
Arf GTPases control vesicle formation from different intracellular membranes and are regulated by Arf guanine nucleotide exchange factors (GEFs). Outside of their conserved catalytic domains, known as Sec7 domains, little is known about Arf GEFs. Rsp5 is a yeast ubiquitin ligase that regulates numerous membrane trafficking events and carries a C2 domain that is specifically required for trans-Golgi network to vacuole transport. In a screen for proteins that interact with the Rsp5 C2 domain we identified Sec7, the GEF that acts on Golgi-associated Arfs. The Rsp5-Sec7 interaction is direct, occurs in vivo, and is conserved among mammalian Rsp5 and Sec7 homologues. A 50-amino acid region near the Sec7 C terminus is required for Rsp5 binding and for normal Sec7 localization. Binding of Sec7 to Rsp5 is dependent on the presence of the phosphoinositide 3-kinase Vps34, suggesting that phosphatidylinositol 3-phosphate (PI(3)P) plays a role in regulating this interaction. Overexpression of Sec7 significantly suppresses the growth and sorting defects of an rsp5 C2 domain point mutant. These observations identify a new functional region within the Sec7/BIG family of Arf GEFs that is required for trans-Golgi network localization.  相似文献   

7.
The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF) that activates the host small GTPase protein ADP-ribosylation factor (Arf), and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF) and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF). These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins.  相似文献   

8.
Guanine nucleotide exchange factors carrying a Sec7 domain (ArfGEFs) activate the small GTP-binding protein Arf, a major regulator of membrane remodeling and protein trafficking in eukaryotic cells. Only two of the seven subfamilies of ArfGEFs (GBF and BIG) are found in all eukaryotes. In addition to the Sec7 domain, which catalyzes GDP/GTP exchange on Arf, the GBF and BIG ArfGEFs have five common homology domains. Very little is known about the functions of these noncatalytic domains, but it is likely that they serve to integrate upstream signals that define the conditions of Arf activation. Here we describe interactions between two conserved domains upstream of the Sec7 domain (DCB and HUS) that determine the architecture of the N-terminal regions of the GBF and BIG ArfGEFs using a combination of biochemical, yeast two-hybrid, and cellular assays. Our data demonstrate a strong interaction between DCB domains within GBF1, BIG1, and BIG2 to maintain homodimers and an interaction between DCB and HUS domains within each homodimer. The DCB/HUS interaction is mediated by the HUS box, the most conserved motif in large ArfGEFs after the Sec7 domain. In support of the in vitro data, we show that both the DCB and the HUS domains are necessary for GBF1 dimerization in mammalian cells and that the DCB domain is essential for yeast viability. We propose that the dimeric DCB-HUS structural unit exists in all members of the GBF and BIG ArfGEF groups and in the related Mon2p family and probably serves an important regulatory role in Arf activation.  相似文献   

9.
GTPases share highly conserved guanine nucleotide-binding domains and fulfill diverse functions through a common molecular switch. An inactive GDP-bound protein is turned on by a guanine nucleotide exchange factor (GEF) that catalyzes exchange of GTP for GDP, but unfortunately little is known about the mechanism of GEF action. A common mechanism for GDP/GTP exchange can be envisioned wherein GEFs activate monomeric GTPases through transient disruption of Mg2+ coordination in the nucleotide-binding pocket while stabilizing a nucleotide-free (and cation-free) conformation. After guanine nucleotide exchange, Mg2+ coordination is restored to complete the conformational switch to the active GTP-bound state. Evidence in the literature highlighting an important regulatory role for Mg2+ in the mechanism of GEF-mediated GDP/GTP exchange by monomeric GTPases is summarized. BioEssays 20 :516–521, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

10.
ADP-ribosylation factors (Arfs) play key roles in controlling membrane traffic and organelle structures. The activation of Arfs from GDP to GTP binding form is triggered by the guanine exchange factors (GEFs). There are six families of Arf-GEFs with a common guanine exchange catalytic domain (Sec7 domain) and various mechanisms of guanine exchange activity regulation. A loop region (loop>J motif) just following the helix J of Sec7 domain was found conserved and important for the catalytic activity regulation of Arf-GEFs. However, the molecular detail of the role the loop>J motif plays has been yet unclear. Here, we studied the catalytic domain of Sec7p, a yeast trans-Golgi network membrane localized Arf-GEFs, and found that the loop>J motif is indispensible for its GEF catalytic activity. Crystallographic, NMR spectrum and mutagenesis studies suggested that the loop>J motif with a key conserved residue Ile1010 modulates the fine conformation of Sec7 domain and thereby regulates its guanine exchange activity.  相似文献   

11.
ARNO is a soluble guanine nucleotide exchange factor (GEF) for the Arf family of GTPases. Although in biochemical assays ARNO prefers Arf1 over Arf6 as a substrate, its localization in cells at the plasma membrane (PM) suggests an interaction with Arf6. In this study, we found that ARNO activated Arf1 in HeLa and COS-7 cells resulting in the recruitment of Arf1 on to dynamic PM ruffles. By contrast, Arf6 was activated less by ARNO than EFA6, a canonical Arf6 GEF. Remarkably, Arf6 in its GTP-bound form recruited ARNO to the PM and the two proteins could be immunoprecipitated. ARNO binding to Arf6 was not mediated through the catalytic Sec7 domain, but via the pleckstrin homology (PH) domain. Active Arf6 also bound the PH domain of Grp1, another ARNO family member. This interaction was direct and required both inositol phospholipids and GTP. We propose a model of sequential Arf activation at the PM whereby Arf6-GTP recruits ARNO family GEFs for further activation of other Arf isoforms.  相似文献   

12.
Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg2+ and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.  相似文献   

13.
The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.  相似文献   

14.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

15.
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Gαq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Gαq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Gαq (Gαq-Q209L) compared to wild-type Gαq in HEK293 cells. Stimulation of TPβ, a Gαq-coupled receptor, to activate Gαq resulted in the promotion of a protein complex between Gαq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Gαq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Gαq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPβ, a process that we previously demonstrated to be dependent on Gαq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Gαq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Gαq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.  相似文献   

16.
The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.  相似文献   

17.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction, prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex, nucleotide-free ARF1*Sec7 and ARF1*GDP, we suggest that, in addition to forcing nucleotide release, the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus, the Sec7 domain may act as a dual catalyst, facilitating both nucleotide release and conformational switching on ARF proteins.  相似文献   

18.
Cell migration is central to normal physiology in embryogenesis, the inflammatory response and wound healing. In addition, the acquisition of a motile and invasive phenotype is an important step in the development of tumors and metastasis. Arf GTPase-activating proteins (GAPs) are nonredundant regulators of specialized membrane surfaces implicated in cell migration. Part of Arf GAP function is mediated by regulating the ADP ribosylation factor (Arf) family GTP-binding proteins. However, Arf GAPs can also function independently of their GAP enzymatic activity, in some cases working as Arf effectors. In this commentary, we discuss examples of Arf GAPs that function either as regulators of Arfs or independently of the GTPase activity to regulate membrane structures that mediate cell adhesion and movement.Key words: Arf GAP, Arf, effector, ADP-ribosylation factor, GTPase-activating protein, focal adhesions, podosomes, invadopodia, cell migrationCell migration involves adhesive structures in which the cell membrane is integrated with the actin cytoskeleton.1 Cells acquire a spatial asymmetry to enable them to turn intracellular generated forces into a net cell body translocation. With the asymmetry, there is a clear distinction between the cell front and rear. Active membrane processes, including lamellipodia and filopodia, take place primarily around the cell front. Extension of both filopodia and lamellipodia is coupled with local actin polymerization, which generates protrusive force. In some cells, focal complexes form at the leading edge of lamellipodia and filopodia. Focal complexes are specialized surfaces of the plasma membrane that mediate attachment to the substratum, providing traction and allowing the cell edge to protrude. Focal complexes mature with cell migration to form another specialized surface in the plasma membrane, focal adhesions (FAs). FAs localize to the termini of stress fiber bundles and serve in longer-term anchorage at the rear of the cell.2 A contractile force is generated at the rear of the cell by the myosin motors to move the cell forward and cell-substratum (extracellular matrix) attachments are released to retract the cell rear. In some cells, podosomes are adhesive structures that mediate cell migration and sometimes invasion.The structures involved in cell migration that are affected by Arf GAPs are FAs, podosomes and invadopodia. FAs contain multiple proteins, including integrins, which are transmembrane proteins.3 The extracellular part of integrins binds to the extracellular matrix. The cytoplasmic domains of integrins associate with multiple signaling proteins as well as proteins that are part of the actin cytoskeleton, thereby coordinating signaling events involved in cell migration and linking the extracellular matrix to the cytoskeleton. Cytoplasmic proteins critical to the function of FAs and that are often used as markers of FAs include vinculin, paxillin and focal adhesion kinase. At least five distinct Arf GAPs have been found to associate with FAs, including GIT1, GIT2, ASAP1, ASAP3 and ARAP2.4Podosomes and invadopodia are related structures induced by action of Src (reviewed in ref. 5). They contain some proteins in common with FAs, but do have some differences that likely reflect different function and/or regulation. For example, podosomes contain ASAP1 but not ASAP3.6 Podosomes and invadopodia have not been examined for the presence of other Arf GAPs. Like FAs, podosomes and invadopodia mediate adhesion to extracellular surfaces. In addition, they are points of degradation of the extracellular matrix and may transfer tension along the extracellular matrix to enable the cell to move. Consistent with the function in motility, podosomes and invadopodia are dynamic structures, turning over in minutes. Podosomes are found in normal physiology of cells including smooth muscle cells, osteoclasts and macrophages and in Src-transformed fibroblasts. Invadopodia are observed in transformed cells, such as cells derived from breast cancers.Two families of GTP-binding proteins within the Ras superfamily, Rho and Arf, are involved in both actin and membrane remodeling. RhoA regulates stress fibers (bundles of actin filaments that traverse the cell and are linked to the extracellular matrix through FAs) and the assembly of FAs.7 Rac1 regulates membrane ruffling and lamellipodia formation.8 Cdc42 regulates filopodia formation.9 Activation of Cdc42 has been shown to lead to the sequential activation of Rac1 and then RhoA in growth factor stimulated fibroblasts.Arf proteins regulate membrane traffic and the actin cytoskeleton.10 There are six mammalian Arf proteins, divided into three classes based on their amino-acid sequence. Arf12 and 3 are class I, Arf4 and Arf5 are class II and Arf6 is the single member of the class III group. Arf1 and Arf6 have been the most extensively studied. Most work has focused on Arf1 function in the Golgi apparatus and endocytic compartments although Arf1 has been found to affect paxillin recruitment to FAs and trafficking of epidermal growth factor receptor from the plasma membrane. Arf6 affects the endocytic pathway and the peripheral actin cytoskeleton.The function of Rho and Arf family proteins depends on a cycle of binding and hydrolyzing GTP. However, Rho and Arf family proteins have slow intrinsic nucleotide exchange. Rho family proteins have slow intrinsic GTPase activity and Arf family proteins have no detectable intrinsic GTPase activity. The cycle of GTP binding and hydrolysis is driven by accessory proteins called guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho family proteins are also regulated by guanine nucleotide dissociation inhibitors, which prevent spontaneous activation in the cytoplasm.Arf GAPs are enzymes that catalyze the hydrolysis of GTP bound to Arf proteins, thereby converting Arf•GTP to Arf•GDP. Thirty-one genes in human encode proteins with Arf GAP domains (Fig. 1). The Arf GAP family is divided into ten subgroups based on domain structure and phylogenetic analysis.11 Six subgroups contain the Arf GAP domain at the N-terminus of the protein. Four groups contain a tandem of a PH, Arf GAP and Ankyrin repeat domains. The Arf GAP nomenclature is mostly based on the protein domain structure. For instance, the ASAP first identified, ASAP1, contains Arf GAP, SH3, Ank repeat and PH domains; ARAPs contain Arf GAP, Rho GAP, Ank repeat and PH domains; ACAPs contain Arf GAP, coiled-coil (later identified as BAR domain), Ank repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, Ank repeat and PH domains.Open in a separate windowFigure 1Domain structure of the Arf GAP family. The schematic representation of the ten groups of proteins containing the Arf GAP domain is not drawn to scale. Abbreviations used are: ALPS, ArfGAP1 lipid-packing sensor domain; Ank, Ankyrin repeats; Arf GAP, Arf GTPase activating domain; BAR, Bin/Amphiphysin/Rvs domain; CALM, CALM binding domain; CB, clathrin box; CC, coiled-coiled domain; FG repeats, multiple copies of the XXFG motif; GLD, GTP-binding protein-like domain; PBS, paxillin binding site; PH, pleckstrin homology domain; Pro (PxxP)3, cluster of three proline-rich (PxxP) motifs; Pro (D/ELPPKP)8, eigth tandem Prolin-rich (D/ELPPKP) motifs; RA, Ras association motif; Rho GAP, Rho GTPase activating domain; SAM, sterile α-motif; SH3, Src homology 3 domain; SHD, Spa homology domain. *ASAP2 and ASAP3 lack the Pro (D/ELPPKP)8 motifs. ASAP3 has no SH3 domain. &AGAP2 has a splice variant with three N-terminal PxxP motifs, called PIKE-L. @ARAP2 has an inactive Rho GAP domain.The subcellular localization and function of a number of Arf GAPs have been identified. Arf GAP1, Arf GAP2 and Arf GAP3 are found in the Golgi apparatus where they control membrane traffic by regulating Arf1•GTP levels.12,13 Arf GAP1 has also been proposed to directly contribute to the formation of transport intermediates.14 SMAPs and AGAP1 and AGAP2 are associated with endosomes and regulate endocytic trafficking.14,15 ASAPs, ARAPs and Gits are associated with FAs. ASAPs, ARAPs and ACAPs are found in actin-rich membrane ruffles. ASAP1 is also found in invadopodia and podosomes.4 We propose that common to all Arf GAPs is that they laterally organize membranes, which maintain surfaces of specialized functions such as FAs and podosomes/invadopodia. Some Arf GAPs function primarily as Arf effectors with the turnover rate of the specialized membrane surface being determined by the catalytic rate of the GAP. Other Arf GAPs function as Arf regulators that integrate several signals.ASAP1 is an example of an Arf GAP that may function as an Arf effector to regulate podosomes and invadopodia. ASAP1 is encoded by a gene on the short arm of chromosome 8. The gene is amplified in aggressive forms of uveal melanoma and cell migration rates correlate with ASAP1 expression levels in uveal melanoma16 and other cell types. ASAP1 function depends on cycling among four cellular locations, cytosol, FAs, lamellipodia and podosomes/invadopodia. ASAP1 is necessary for the formation of podosomes/invadopodia.17,18The structural features of ASAP1 that are required to support podosome formation have been examined.17,18 ASAP1 contains, from the N-terminus, BAR, PH, Arf GAP, Ank repeat, proline rich and SH3 domains (Fig. 2A).19 There are two major isoforms, ASAP1a and ASAP1b that differ in the proline rich domain. ASAP1a contains three SH3 binding motifs within the proline rich region including an atypical SH3 binding motif with 6 consecutive prolines. The atypical SH3 binding motif is absent in ASAP1b (Fig. 2A). ASAP1 also has a highly conserved tyrosine between the Ank repeat and proline rich domains that is a site of phosphorylation by the oncogene Src.18Open in a separate windowFigure 2ASAP1 function in podosome and invadopodia formation. (A) Domain structure of ASAP1 splice variants. ASAP1a contains three proline-rich motifs, P1, P2 and P3. P1 and P3 contain a typical (PxxP) motif. P2 contains six prolines. ASAP1b contains only P1 and P3. (B) Model of ASAP1 functioning as an Arf effector to regulate podosome and invadopodia formation. ASAP1 integrates signals from Src, PIP2 and Arf•GTP. For abbreviations of the domain structure of ASAP1 see Figure 1. Other abbreviations: PIP2, phosphoinositides 4,5-biphosphate; Arf1, ADP-ribosylation factor 1.The BAR domain is a bundle of 3 α-helices that homodimerizes to form a boomerang-shaped structure.20,21 BAR domains sense or induce membrane curvature.20 ASAP1 has been found to induce curvature dependent on its BAR domain.22 BAR domains are also protein binding sites.21 The BAR domain of ASAP1 binds to FIP3, a Rab11 and Arf6 binding proteins.23 Arf6-dependent targeting of ASAP1 is likely mediated by FIP3.23 Deletion of or introduction of point mutations into the BAR domain render ASAP1 inactive in supporting podosome formation. The relative role of membrane tubulation and protein binding in mediating the effect of the BAR domain on podosome formation has not been explored.The SH3 domain of ASAP1 binds to focal adhesion kinase24 and pyk2.25 Either deletion of or introduction of point mutations into the SH3 domain abrogates the ability of ASAP1 to support podosome formation.18 The molecular basis for the function of the SH3 domain in podosome formation is not known. The proline rich domain binds to Src19 and CrkL.26 Whether it also binds to cortactin has not been resolved. Reports also conflict regarding the importance of the proline rich domain for podosomes/invadopodia formation.17,18Three signals impinge on ASAP1 to drive podosome formation (Fig. 2B). A conserved tyrosine between the Ank and proline rich motifs is phosphorylated by Src.18,25 Mutation of the tyrosine to phenylalanine results in a protein that functions as a dominant negative blocking podosome formation. ASAP1 with the tyrosine changed to glutamate can support podosome formation, but the mutant ASAP1 is not sufficient to drive podosome formation.18 Based on these results, phosphorylation of the conserved tyrosine is necessary but not sufficient to support podosome formation. Phosphatidylinositol 4,5-bisphosphate (PIP2) binds to the PH domain, which stimulates GAP activity in vitro.27 ASAP1 with mutations in the PH domain that abrogate binding, does not support podosome formation (Jian, Bharti and Randazzo PA, unpublished observations). Point mutations in the PH domain affect both the Km and the kcat for GAP activity. The effect of mutating the PH domain on the ability of ASAP1 to support podosome formation may be consequent to changes in binding Arf1•GTP; it is not likely the result of loss of GAP activity. ASAP1 with a point mutation in the GAP domain that prevents GAP activity but not Arf1•GTP binding is able to support podosome formation whereas a point mutant of ASAP1 that cannot bind Arf1•GTP does not (Jian, Bharti and Randazzo PA, unpublished observations).18 These data support the idea that ASAP1 integrates three signals, (1) PIP2, (2) Src and (3) Arf1•GTP. In response to the signals, ASAP1 functions as a scaffold and directly alters the lipid bilayer to create a domain within the plasma membrane that becomes a podosome. In this model, ASAP1 is functioning as an Arf effector and the GAP activity may regulate the turnover of podosomes.ASAP3, another ASAP-type protein, is found in FAs.6 Reducing ASAP3 expression also reduces cell migration and invasion of Arf GAPs in cell migration mammary carcinoma cells through matrigel. Although ASAP3 does not affect the ability to form FAs, it does affect stress fiber formation and may affect focal adhesion maturation (Ha, Chen and Randazzo PA, unpublished observations).6 The molecular mechanisms underlying the effects of ASAP3 on the cytoskeleton are being examined including the possibility that, like ASAP1, ASAP3 integrates several signals and functions as an Arf effector.ARAPs are examples of Arf GAP family proteins that function as Arf regulators. In common with ASAPs, they integrate a number of signaling pathways and affect the actin cytoskeleton. Three genes encode ARAPs in humans.11 Each of the ARAPs is comprised of a SAM, five PH, Arf GAP, Rho GAP, Ank repeat and Ras association domains. Two of the five PH domains have the consensus sequence for binding to the signaling lipid phosphoinositide 3,4,5-triphosphate (PIP3); however, when examined for ARAP1, PIP3 was not involved in membrane targeting (Campa F, Balla and Randazzo PA, unpublished observations).Examination of the role of ARAP2 in FA formation has provided information about the function of the GAP activity in the cellular function of an Arf GAP. ARAP2 selectively uses Arf6 as a substrate and, different from ARAP1 and ARAP3, has an inactive Rho GAP domain. The Rho GAP domain, however, retains the ability to selectively bind to RhoA•GTP. Also different from ARAP1 and ARAP3, ARAP2 associates with FAs. Cells with reduced expression of ARAP2, consequent to siRNA treatment, have fewer FAs and stress fibers and more focal complexes than control cells. The formation of FAs and stress fibers can be restored by expressing recombinant wild type ARAP2. A mutant of ARAP2 that lacks Arf GAP activity, while retaining the ability to bind to Arf6•GTP, cannot restore FA and stress fiber formation. Similarly, expression of a mutant of ARAP2 that is not able to bind RhoA•GTP cannot reverse the effect of reducing expression of endogenous ARAP2.28 These results support the idea that ARAP2 functions as an Arf GAP that is an effector of RhoA.The model of ARAP2 functioning as a RhoA effector can explain the effects of ARAP2 on FAs (Fig. 3). Arf6•GTP is involved in the formation of Rac1•GTP.29 Rac1•GTP drives lamellipodia and focal complex formation. The conversion of focal complexes to FAs is accompanied by an increase in RhoA•GTP and a decrease in Rac1•GTP. ARAP2 could function to mediate the reciprocal changes in RhoA and Rac1. RhoA•GTP formation leads to the activation of ARAP2. As a consequence of Arf6 GAP activity, Arf6•GTP is converted to Arf6•GDP. With reduced Arf6•GTP, Rac1•GTP concentration also decreases.Open in a separate windowFigure 3Model of ARAP2 as an Arf regulator that controls focal adhesion formation. In this model, ARAP2 functions as a RhoA effector. The inactive Rho GAP domain of ARAP2 binds to RhoA•GTP, which contributes to activation of Arf6 GAP activity. ARAP2 hydrolyzes its substrate Arf6•GTP into Arf6•GDP. Subsequent to Arf6•GTP hydrolysis, Rac1•GTP concentration decreases. For abbreviations of the domain structure of ARAP2 see Figure 1.The Arf GAP activity of other ARAPs may also be critical for cellular functions of the protein. Furthermore, the Rho GAP activity is slow for ARAP1 and ARAP3. It is possible that ARAP1 and ARAP3 can function as Rho effectors with an active Rho GAP domain analogously to ASAP1 functioning as an Arf effector. Further definition of the cellular function of ARAP1 and ARAP3 will provide opportunities to test this idea.We have provided two examples of Arf GAPs that affect cell adhesion and migration. In one case, the Arf GAP appears to function as an Arf effector. In the other case, the Arf GAP functions as a regulator of Arf. The difference in function was discerned using Arf GAP mutants. If functioning as an Arf effector, an Arf GAP mutant that can bind Arf•GTP but not induce hydrolysis can reverse the effect of reduced endogenous Arf GAP, whereas a mutant that cannot bind Arf•GTP cannot replace endogenous Arf GAP. When working as an Arf regulator, a mutant that can bind Arf•GTP but not induce GTP hydrolysis cannot replace endogenous Arf GAP. Whether functioning as an effector or regulator, the rate of GAP activity determines the turnover rate of a specialized membrane surface maintained by Arf.The Arf GAPs have specific sites of action within cells. Some contribute to malignancy, such as ASAP1, ASAP3, AGAP2 and SMAP1.30 The molecular basis of cellular function of each Arf GAPs is distinct. Here, we describe one Arf GAP that functions as an Arf effector and another that functions as an Arf regulator. Each class of Arf GAP has distinct sets of protein binding partners. Furthermore, catalytic mechanism differs among the GAPs. Because of these differences, Arf GAPs may be useful therapeutic targets for cancer therapy.  相似文献   

19.
Kalirin is a GDP/GTP exchange factor (GEF) for Rho proteins that modulates the actin cytoskeleton in neurons. Alternative splicing generates Δ-isoforms, which encode the RhoGEF domain, but lack the N-terminal Sec14p domain and first 4 spectrin-like repeats of the full-length isoforms. Splicing has functional consequences, with Kal7 but not ΔKal7 causing formation of dendritic spines. Cells lacking endogenous Kalirin were used to explore differences between these splice variants. Expression of ΔKal7 in this system induces extensive lamellipodial sheets, while expression of Kal7 induces formation of adherent compact, round cells with abundant cortical actin. Based on in vitro and cell-based assays, Kal7 and ΔKal7 are equally active GEFs, suggesting that other domains are involved in controlling cell morphology. Catalytically inactive Kal7 and a Kalirin fragment which includes only Sec14p and spectrin-like domains retain the ability to produce compact, round cells and fractionate as high molecular weight complexes. Separating the Sec14p domain from the spectrin-like repeats eliminates the ability of Kal7 to cause this response. The isolated Sec14p domain binds PI(3,5)P2 and PI3P, but does not alter cell morphology. We conclude that the Sec14p and N-terminal spectrin-like domains of Kalirin play critical roles in distinguishing the actions of full-length and Δ-Kalirin proteins.  相似文献   

20.
Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in nonneuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non–receptor tyrosine kinase, and the Drosophila orthologue of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treating cortical neurons of the wild-type mouse, but not the Kal7KO mouse, with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号