首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ATP-binding cassette transporter G2 (ABCG2), also known as breast cancer resistance protein (BCRP), is identified as a high-capacity urate exporter and its dysfunction has an association with serum uric acid (SUA) levels and gout/hyperuricemia risk. However, pathophysiologically important pathway(s) responsible for the ABCG2-mediated urate excretion were unknown. In this study, we investigated how ABCG2 dysfunction affected the urate excretion pathways. First, we revealed that mouse Abcg2 mediates urate transport using the membrane vesicle system. The export process by mouse Abcg2 was ATP-dependent and not saturable under the physiological concentration of urate. Then, we characterized the excretion of urate into urine, bile, and intestinal lumen using in vivo mouse model. SUA of Abcg2-knockout mice was significantly higher than that of control mice. Under this condition, the renal urate excretion was increased in Abcg2-knockout mice, whereas the urate excretion from the intestine was decreased to less than a half. Biliary urate excretion showed no significant difference regardless of Abcg2 genotype. From these results, we estimated the relative contribution of each pathway to total urate excretion; in wild-type mice, the renal excretion pathway contributes approximately two-thirds, the intestinal excretion pathway contributes one-third of the total urate excretion, and the urate excretion into bile is minor. Decreased intestinal excretion could account for the increased SUA of Abcg2-knockout mice. Thus, ABCG2 is suggested to have an important role in extra-renal urate excretion, especially in intestinal excretion. Accordingly, increased SUA in patients with ABCG2 dysfunction could be explained by the decreased excretion of urate from the intestine.  相似文献   

2.
ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP) is identified as a high-capacity urate exporter, and its dysfunction has an association with serum uric acid levels and gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate “overproduction type,” “underexcretion type,” and “combined type” based on only renal urate excretion, without considering an extra-renal pathway such as gut excretion. In this study, we investigated the effects of ABCG2 dysfunction on human urate handling and the mechanism of hyperuricemia.

Clinical parameters for urate handling including urinary urate excretion (UUE) were examined in 644 Japanese male outpatients with hyperuricemia. The severity of their ABCG2 dysfunction was estimated by genotype combination of two common ABCG2 variants, nonfunctional Q126X (rs72552713) and half-functional Q141K (rs2231142).

Contrary to the general understanding that ABCG2 dysfunction leads to decreased renal urate excretion, UUE was significantly increased by ABCG2 dysfunction (P = 3.60 × 10?10). Mild, moderate, and severe ABCG2 dysfunctions significantly raised the risk of “overproduction” hyperuricemia including overproduction type and combined type, conferring risk ratios of 1.36, 1.66, and 2.35, respectively.

The present results suggest that common dysfunctional variants of ABCG2 decrease extra-renal urate excretion including gut excretion and cause hyperuricemia. Thus, “overproduction type” in the current concept of hyperuricemia should be renamed “renal overload type,” which is caused by two different mechanisms, “extra-renal urate underexcretion” and genuine “urate overproduction.”

Our new concept will lead to a more accurate diagnosis and more effective therapeutic strategy for hyperuricemia and gout.  相似文献   

3.
The hypouricemic actions of exopolysaccharide produced by Cordyceps militaris (EPCM) in potassium oxonate-induced hyperuricemia in mice were examined. Hyperuricemic mice were administered intragastrically with EPCM (200, 400 and 800 mg/kg body weight) or allopurinol (5 mg/kg body weight) once daily. Serum uric acid, blood urea nitrogen and liver xanthine oxidase (XOD) activities of each treatment were measured after administration for 7 days. EPCM showed dose-dependent uric acid-lowering actions. EPCM at a dose of 400 mg/kg body weight and allopurinol showed the same effect in serum uric acid, blood urea nitrogen and liver XOD activities in hyperuricemic mice. An increase in liver XOD activities was observed in hyperuricemic mice due to administration of EPCM at a dose of 200 mg/kg body weight. EPCM at a dose of 800 mg/kg body weight did not show significant effects on serum uric acid and XOD activities. We conclude that EPCM has a hypouricemic effect caused by decreases in urate production and the inhibition of XOD activities in hyperuricemic mice, and this natural product exhibited more potential efficacy than allopurinol in renal protection.  相似文献   

4.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

5.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

6.
Gout is a common disease caused by hyperuricemia, which shows elevated serum uric acid (SUA) levels. From a viewpoint of urate handling in humans, gout patients can be divided into those with renal overload (ROL) gout with intestinal urate underexcretion, and those with renal underexcretion (RUE) gout. Recent genome-wide association studies (GWAS) revealed an association between SUA and a variant in human monocarboxylate transporter 9 (MCT9/SLC16A9) gene. Although the function of MCT9 remains unclear, urate is mostly excreted via intestine and kidney where MCT9 expression is observed. In this study, we investigated the relationship between a variant of MCT9 and gout in 545 patients and 1,115 healthy volunteers. A missense variant of MCT9 (K258T), rs2242206, significantly increased the risk of ROL gout (p = 0.012), with odds ratio (OR) of 1.28, although it revealed no significant association with all gout cases (p = 0.10), non-ROL gout cases (p = 0.83), and RUE gout cases (p = 0.34). In any case groups and the control group, minor allele frequencies of rs2242206 were >0.40. Therefore, rs2242206 is a common missense variant and is revealed to have an association with ROL gout, indicating that rs2242206 relates to decreased intestinal urate excretion rather than decreased renal urate excretion. Our study provides clues to better understand the pathophysiology of gout as well as the physiological roles of MCT9.  相似文献   

7.
The ATP-binding cassette, subfamily G, member 2 (ABCG2/BCRP) gene encodes a well-known transporter, which exports various substrates including nucleotide analogs such as 3′-azido-3′-deoxythymidine (AZT). ABCG2 is also located in a gout-susceptibility locus (MIM 138900) on chromosome 4q, and has recently been identified by genome-wide association studies to relate to serum uric acid (SUA) and gout. Becuase urate is structurally similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate exporter. To demonstrate our hypothesis, transport assays were performed with membrane vesicles prepared from ABCG2-overexpressing cells. Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited by urate as well as AZT and ES. ATP-dependent transport of urate was then detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic analysis revealed that ABCG2 is a high-capacity urate transporter that maintained its function even under high-urate concentration. The calculated parameters of ABCG2-mediated transport of urate were a Km of 8.24 ± 1.44 mM and a Vmax of 6.96 ± 0.89 nmol/min per mg of protein. Moreover, the quantitative trait locus (QTL) analysis performed in 739 Japanese individuals revealed that a dysfunctional variant of ABCG2 increased SUA as the number of minor alleles of the variant increased (p = 6.60 × 10?5). Because ABCG2 is expressed on the apical membrane in several tissues, including kidney, intestine, and liver, these findings indicate that ABCG2, a high-capacity urate exporter, has a physiological role of urate homeostasis in the human body through both renal and extrarenal urate excretion.  相似文献   

8.
The ATP-binding cassette, subfamily G, member 2 (ABCG2/BCRP) gene encodes a well-known transporter, which exports various substrates including nucleotide analogs such as 3'-azido-3'-deoxythymidine (AZT). ABCG2 is also located in a gout-susceptibility locus (MIM 138900) on chromosome 4q, and has recently been identified by genome-wide association studies to relate to serum uric acid (SUA) and gout. Becuase urate is structurally similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate exporter. To demonstrate our hypothesis, transport assays were performed with membrane vesicles prepared from ABCG2-overexpressing cells. Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited by urate as well as AZT and ES. ATP-dependent transport of urate was then detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic analysis revealed that ABCG2 is a high-capacity urate transporter that maintained its function even under high-urate concentration. The calculated parameters of ABCG2-mediated transport of urate were a Km of 8.24 ± 1.44 mM and a Vmax of 6.96 ± 0.89 nmol/min per mg of protein. Moreover, the quantitative trait locus (QTL) analysis performed in 739 Japanese individuals revealed that a dysfunctional variant of ABCG2 increased SUA as the number of minor alleles of the variant increased (p = 6.60 × 10(-5)). Because ABCG2 is expressed on the apical membrane in several tissues, including kidney, intestine, and liver, these findings indicate that ABCG2, a high-capacity urate exporter, has a physiological role of urate homeostasis in the human body through both renal and extrarenal urate excretion.  相似文献   

9.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10(-5)). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3-64.6; p = 3.39 × 10(-21)). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   

10.
Although dietary, genetic, or disease-related excesses in urate production may contribute to hyperuricemia, impaired renal excretion of uric acid is the dominant cause of hyperuricemia in the majority of patients with gout. The aims of this review are to highlight exciting and clinically pertinent advances in our understanding of how uric acid is reabsorbed by the kidney under the regulation of urate transporter (URAT)1 and other recently identified urate transporters; to discuss urate-lowering agents in clinical development; and to summarize the limitations of currently available antihyperuricemic drugs. The use of uricosuric drugs to treat hyperuricemia in patients with gout is limited by prior urolothiasis or renal dysfunction. For this reason, our discussion focuses on the development of the novel xanthine oxidase inhibitor febuxostat and modified recombinant uricase preparations.  相似文献   

11.
近年来,高尿酸血症(hyperuricemia,HUA)在人群中频发,危害性强,并发症多。为了探究日常饮品--半发酵茶铁观音茶水对于缓解HUA是否具有辅助作用,以小鼠为实验对象,采用氧嗪酸钾和次黄嘌呤联合法构建小鼠高尿酸血症模型,21只模型鼠随机分为模型组、铁观音茶水提物组、阳性药物组,7只非模型鼠作为对照。做不同处理2周后,取小鼠血清及肾、肝、小肠。观察各器官病理变化,从细胞层面鉴定铁观音茶水提物对高尿酸血症小鼠各脏器的影响;测定与HUA相关度较高的生化指标:血清尿酸(uric acid,UA)浓度、肝黄嘌呤氧化酶(xanthine oxidase,XOD)活力,以明确造模是否成功以及判断铁观音茶水提物对HUA是否具有缓解作用;利用qRT-PCR检测尿酸合成和排泄相关基因的mRNA表达水平,并利用Western blot检测肝XOD蛋白的表达水平,以从分子层面明确铁观音茶水提物对HUA的影响。病理切片显示,相比于阳性药物组,铁观音茶水提物组小鼠的肾和肝损害程度较轻;生化指标测定结果显示,铁观音茶水提物可降低血清尿酸水平,并且抑制XOD活性;从分子层面可以看出,铁观音茶水提物显著升高了尿酸重吸收转运体尿酸转运蛋白1(uric acid transporter 1,URAT1)和有机阴离子转运蛋白3(organic anion transporter 3,OAT3)的mRNA表达水平(P<0.05),显著降低了葡萄糖转运子9(glucose transporter 9,GLUT9)和有机阴离子转运蛋白1(organic anion transporter 1,OAT1)的表达水平(P<0.05)。虽然qRT-PCR和Western blot提示,XOD的mRNA和蛋白质的表达水平升高,但尿酸生成量却下降,推测可能是铁观音茶水提物中的某种成分使得无催化活性的XOD蛋白表达增加进而对XOD基因的转录表达造成一种正反馈。研究提示,铁观音茶水提物对小鼠高尿酸血症具有缓解作用,其缓解高尿酸血症的作用与抑制XOD活性、干预尿酸生成过程和刺激或抑制相关阴离子转运体mRNA的表达相关。  相似文献   

12.
BackgroundInsufficient renal urate excretion and/or overproduction of uric acid (UA) are the dominant causes of hyperuricemia. Baicalein (BAL) is widely distributed in dietary plants and has extensive biological activities, including antioxidative, anti-inflammatory and antihypertensive activities.Purpose: To investigate the anti-hyperuricemic effects of BAL and the underlying mechanisms in vitro and in vivo.MethodsWe investigated the inhibitory effects of BAL on GLUT9 and URAT1 in vitro through electrophysiological experiments and 14C-urate uptake assays. To evaluate the impact of BAL on serum and urine UA, the expression of GLUT9 and URAT1, and the activity of xanthine oxidase (XOD), we developed a mouse hyperuricemia model by potassium oxonate (PO) injection. Molecular docking analysis based on homology modeling was performed to explain the predominant efficacy of BAL compared with the other test compounds.ResultsBAL dose-dependently inhibited GLUT9 and URAT1 in a noncompetitive manner with IC50 values of 30.17 ± 8.68 μM and 31.56 ± 1.37 μM, respectively. BAL (200 mg/kg) significantly decreased serum UA and enhanced renal urate excretion in PO-induced hyperuricemic mice. Moreover, the expression of GLUT9 and URAT1 in the kidney was downregulated, and XOD activity in the serum and liver was suppressed. The docking analysis revealed that BAL potently interacted with Trp336, Asp462, Tyr71 and Gln328 of GLUT9 and Ser35 and Phe241 of URAT1.ConclusionThese results indicated that BAL exerts potent antihyperuricemic efects through renal UA excretal promotion and serum UA production. Thus, we propose that BAL may be a promising treatment for the prevention of hyperuricemia owing to its multitargeted inhibitory activity.  相似文献   

13.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10?5). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3–64.6; p = 3.39 × 10?21). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   

14.
Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats.  相似文献   

15.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。 WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸( JA)、水杨酸( SA)、脱落酸( ABA)和赤霉素( GA)等,在其信号传递途径中都起着重要作用。 WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件W ̄box( TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

16.
郑敏  麻骏武 《遗传》2016,38(4):300-313
痛风是由高尿酸血症引发的一种常见炎性关节炎,受遗传因素和环境因素共同作用。早期研究表明,PRPS1和HPRT1等单基因稀有突变会引起嘌呤合成代谢紊乱,从而引发高尿酸血症和痛风。近年来,全基因组关联分析(Genome-wide association studies,GWAS)已检出多个导致高尿酸血症和痛风的易感位点及相关候选基因。其中SLC2A9、SLC22A11和SLC22A12基因功能缺失性突变可引起遗传性低尿酸血症,而过表达则会加强尿酸的重吸收。ABCG2、SLC17A1和SLC17A3基因功能缺陷型变异会降低肾脏和肠道对尿酸的排泄量。因此,诱发尿酸排泄障碍(高重吸收和低排泄)的基因变异是影响高尿酸血症和痛风的主要遗传因素。另外,抑制-激活生长因子系统、转录因子、细胞骨架以及基因和环境的互作等因素也一定程度影响血液尿酸水平。在中国汉族人群中,两个新发现的易感基因RFX3和KCNQ1可能造成免疫应答受损和胰岛B细胞功能缺陷,从而直接或间接引起高尿酸酸血症和痛风。本文系统综述了高尿酸血症和痛风的遗传学研究,以促进人们对高尿酸血症和痛风发病机理的理解。  相似文献   

17.
BackgroundA high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified.MethodsWe used male Wistar rats, which were orally administered fructose (5 g/kg). Those rats were used in each experiment at 12 h after administration.ResultsSingle administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose.ConclusionsSingle administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia.  相似文献   

18.
《Phytomedicine》2014,21(10):1196-1201
The roots and rhizomes of Smilax riparia (SR), called “Niu-Wei-Cai” in traditional Chinese medicine (TCM), are believed to be effective in treating gout symptoms. However, it is not clear if the active constituents and uricosuric mechanisms of S. riparia support its therapeutic activities. In this study, we isolated two steroidal glycosides named riparoside B and timosaponin J from the total saponins of S. riparia. We then examined if these two compounds were effective in reducing serum uric acid levels in a hyperuricemic mouse model induced by potassium oxonate. We found that the two steroidal glycosides possess potent uricosuric effect in hyperuricemic mice through decreasing renal mURAT1 mainly and inhibiting XOD activity in a certain extent, which contribute to the enhancement of uric acid excretion and attenuate hyperuricemia-induced renal dysfunction. Riparoside B and timosaponin J may have a clinical utility in treating gout and other medical conditions caused by hyperuricemia.  相似文献   

19.
Gout is a crystalline-related arthropathy caused by the deposition of monosodium urate (MSU). Acute gouty arthritis is the most common first symptom of gout. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasome as pattern recognition receptors can be activated by uric acid crystallization, triggering immune inflammation and causing acute gouty arthritis symptoms. Currently, the treatment of gout mainly includes two basic methods: reducing uric acid and alleviating inflammation. In this paper, 22 novel benzoxazole and benzimidazole derivatives were synthesized from deoxybenzoin oxime derivatives. These compounds have good inhibitory effects on NLRP3 and XOD screened by our research group in the early stage. The inhibitory activities of XOD and NLRP3 and their derivatives were also screened. Notably, compound 9b is a multi-targeting inhibitor of NLRP3 and XOD with excellent potency in treating hyperuricemia and acute gouty arthritis.  相似文献   

20.
In order to evaluate the safety, pharmacological properties, and urate‐lowering efficacy of febuxostat, a non‐purine, selective inhibitor of xanthine oxidase, a Phase 1, 2‐week, multiple‐dose, placebo‐controlled, dose‐escalation study was conducted in 154 healthy adults of both sexes. Daily febuxostat doses in the range 10 mg to 120 mg resulted in proportional mean serum urate reductions ranging from 25% to 70% and in proportional increases in maximum febuxostat plasma concentrations and area under plasma concentration versus time curves. Accompanying the hypouricemic effect were increases in serum xanthine concentrations, decreases in urinary uric acid excretion, and increases in urinary xanthine and hypoxanthine excretion, confirming inhibition of xanthine oxidase activity by febuxostat. Hepatic conjugation and oxidative metabolism were the major pathways of elimination of febuxostat from the body, and renal elimination did not appear to play a significant role. Although not uncommon, adverse events were mild and self‐limited, and no deaths or serious adverse events were observed. Febuxostat is a safe and potent hypouricemic agent in healthy humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号