首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Background

We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis.

Results

We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization.

Conclusions

Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS) for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC) for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10−25) at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10−13) at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.  相似文献   

5.
Serum lipids are associated with myocardial infarction and cardiovascular disease in humans. Here we dissected the genetic architecture of blood lipid traits by applying genome-wide association studies (GWAS) in 1,256 pigs from Laiwu, Erhualian and Duroc × (Landrace × Yorkshire) populations, and a meta-analysis of GWAS in more than 2,400 pigs from five diverse populations. A total of 22 genomic loci surpassing the suggestive significance level were detected on 11 pig chromosomes (SSC) for six blood lipid traits. Meta-analysis of GWAS identified 5 novel loci associated with blood lipid traits. Comparison of GWAS loci across the tested populations revealed a substantial level of genetic heterogeneity for porcine blood lipid levels. We further evaluated the causality of nine polymorphisms nearby or within the APOB gene on SSC3 for serum LDL-C and TC levels. Of the 9 polymorphisms, an indel showed the most significant association with LDL-C and TC in Laiwu pigs. But the significant association was not identified in the White Duroc × Erhualian F2 resource population, in which the QTL for LDL-C and TC was also detected on SSC3. This indicates that population-specific signals may exist for the SSC3 QTL. Further investigations are warranted to validate this assumption.  相似文献   

6.

Background

Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs.

Methods

Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly.

Results

Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits.

Conclusions

GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.  相似文献   

7.
8.

Background

QTL affecting fat deposition related performance traits have been considered in several studies and mapped on numerous porcine chromosomes. However, activity of specific enzymes, protein content and cell structure in fat tissue probably depend on a smaller number of genes than traits related to fat content in carcass. Thus, in this work traits related to metabolic and cytological features of back fat tissue and fat related performance traits were investigated in a genome-wide QTL analysis. QTL similarities and differences were examined between three F2 crosses, and between male and female animals.

Methods

A total of 966 F2 animals originating from crosses between Meishan (M), Pietrain (P) and European wild boar (W) were analysed for traits related to fat performance (11), enzymatic activity (9) and number and volume of fat cells (20). Per cross, 216 (M × P), 169 (W × P) and 195 (W × M) genome-wide distributed marker loci were genotyped. QTL mapping was performed separately for each cross in steps of 1 cM and steps were reduced when the distance between loci was shorter. The additive and dominant components of QTL positions were detected stepwise by using a multiple position model.

Results

A total of 147 genome-wide significant QTL (76 at P < 0.05 and 71 at P < 0.01) were detected for the three crosses. Most of the QTL were identified on SSC1 (between 76-78 and 87-90 cM), SSC7 (predominantly in the MHC region) and SSCX (in the vicinity of the gene CAPN6). Additional genome-wide significant QTL were found on SSC8, 12, 13, 14, 16, and 18. In many cases, the QTL are mainly additive and differ between F2 crosses. Many of the QTL profiles possess multiple peaks especially in regions with a high marker density. Sex specific analyses, performed for example on SSC6, SSC7 and SSCX, show that for some traits the positions differ between male and female animals. For the selected traits, the additive and dominant components that were analysed for QTL positions on different chromosomes, explain in combination up to 23% of the total trait variance.

Conclusions

Our results reveal specific and partly new QTL positions across genetically diverse pig crosses. For some of the traits associated with specific enzymes, protein content and cell structure in fat tissue, it is the first time that they are included in a QTL analysis. They provide large-scale information to analyse causative genes and useful data for the pig industry.  相似文献   

9.
An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.  相似文献   

10.
We herein report the results of a whole genome scan performed in a Piétrain × Large White intercross counting 525 offspring to map QTL influencing economically important growth and carcass traits. We report experiment-wide significant lod scores (> 4.6 for meatiness and fat deposition on chromosome SSC2, and for average daily gain and carcass length on chromosome SSC7. Additional suggestive lod scores (> 3.3) for fat deposition are reported on chromosomes SSC1, SSC7 and SSC13. A significant dominance deviation was found for the QTL on SSC1, while the hypothesis of an additive QTL could not be rejected for the QTL on SSC7 and SSC13. No evidence for imprinted QTL could be found for QTL other than the one previously reported on SSC2.  相似文献   

11.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   

12.
Canine hip dysplasia (CHD) is a serious and common musculoskeletal disease of pedigree dogs and therefore represents both an important welfare concern and an imperative breeding priority. The typical heritability estimates for radiographic CHD traits suggest that the accuracy of breeding dog selection could be substantially improved by the use of estimated breeding values (EBVs) in place of selection based on phenotypes of individuals. The British Veterinary Association/Kennel Club scoring method is a complex measure composed of nine bilateral ordinal traits, intended to evaluate both early and late dysplastic changes. However, the ordinal nature of the traits may represent a technical challenge for calculation of EBVs using linear methods. The purpose of the current study was to calculate EBVs of British Veterinary Association/Kennel Club traits in the Australian population of German Shepherd Dogs, using linear (both as individual traits and a summed phenotype), binary and ordinal methods to determine the optimal method for EBV calculation. Ordinal EBVs correlated well with linear EBVs (r = 0.90–0.99) and somewhat well with EBVs for the sum of the individual traits (r = 0.58–0.92). Correlation of ordinal and binary EBVs varied widely (r = 0.24–0.99) depending on the trait and cut-point considered. The ordinal EBVs have increased accuracy (0.48–0.69) of selection compared with accuracies from individual phenotype-based selection (0.40–0.52). Despite the high correlations between linear and ordinal EBVs, the underlying relationship between EBVs calculated by the two methods was not always linear, leading us to suggest that ordinal models should be used wherever possible. As the population of German Shepherd Dogs which was studied was purportedly under selection for the traits studied, we examined the EBVs for evidence of a genetic trend in these traits and found substantial genetic improvement over time. This study suggests the use of ordinal EBVs could increase the rate of genetic improvement in this population.  相似文献   

13.
Four genes, VTN, KERA, LYZ, and a non-annotated EST (Affymetrix probe set ID: Ssc.25503.1.S1_at), whose candidacy for traits related to water-holding capacity of meat arises from their trait-dependent differential expression, were selected for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing and used to genotype animals of 4 pig populations including 3 commercial herds of Pietrain (PI), Pietrain × (German Large White × German Landrace) (PIF1), German Landrace (DL) and 1 experimental F2 population Duroc × Pietrain (DUPI). Comparative and genetic mapping established the location of VTN on SSC12, of LYZ and KERA on SSC5 and of UN on SSC7, coinciding with QTL regions for meat quality traits. VTN showed association with pH1, pH24 and drip loss. LYZ revealed association with conductivity 24, pH1 and drip loss. KERA was associated with pH. UN showed association with pH24 and drip loss, respectively. However, none of the candidate genes showed significant associations for a particular trait across all populations. This may be due to breed specific effects that are related to the differences in meat quality of theses pig breeds. The studies revealed statistic evidence for a link of genetic variation at these loci or close to them and promoted those four candidate genes as functional and/or positional candidate genes for meat quality traits.  相似文献   

14.
We report haplotype-based GWASs for 33 blood parameters measured in 843 Italian Large White pigs. In the single-trait analysis, a total of 30 QTL for number of basophils, six erythrocyte traits (haemoglobin, haematocrit, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, mean corpuscular volume and red blood cell count) and two clinical–biochemical traits (alkaline phosphatase and Ca2+ contents) were identified. In the multiple-trait analysis, a total of five QTL affected three different clusters of traits. Only four of these QTL were already reported in the single-marker and multi-marker GWASs we previously carried out on the same pig population. QTL on SSC11 and SSC17 showed effects on multiple traits. These results further dissected the genetic architecture of parameters that could be used as proxies in breeding programmes for more complex traits. In addition, these results might help to better define the pig as an animal model for several blood-related biological functions.  相似文献   

15.
The aim of this study was to map QTL for meat quality traits in three connected porcine F2 crosses comprising around 1000 individuals. The three crosses were derived from the founder breeds Chinese Meishan, European Wild Boar and Pietrain. The animals were genotyped genomewide for approximately 250 genetic markers, mostly microsatellites. They were phenotyped for seven meat quality traits (pH at 45 min and 24 h after slaughter, conductivity at 45 min and 24 h after slaughter, meat colour, drip loss and rigour). QTL mapping was conducted using a two‐step procedure. In the first step, the QTL were mapped using a multi‐QTL multi‐allele model that was tailored to analyse multiple connected F2 crosses. It considered additive, dominance and imprinting effects. The major gene RYR1:g.1843C>T affecting the meat quality on SSC6 was included as a cofactor in the model. The mapped QTL were tested for pairwise epistatic effects in the second step. All possible epistatic effects between additive, dominant and imprinting effects were considered, leading to nine orthogonal forms of epistasis. Numerous QTL were found. The most interesting chromosome was SSC6. Not all genetic variance of meat quality was explained by RYR1:g.1843C>T. A small confidence interval was obtained, which facilitated the identification of candidate genes underlying the QTL. Epistasis was significant for the pairwise QTL on SSC12 and SSC14 for pH24 and for the QTL on SSC2 and SSC5 for rigour. Some evidence for additional pairwise epistatic effects was found, although not significant. Imprinting was involved in epistasis.  相似文献   

16.
Chlorine Demand and Inactivation of Fungal Propagules   总被引:2,自引:2,他引:0       下载免费PDF全文
Conidia of filamentous fungi, vegetative yeast cells, and coliform bacteria were tested to determine their chlorine demand and their sensitivity to chlorine inactivation. Levels of chlorine demand for the various conidia, yeast, and coliforms were, respectively, 3.6 × 10−9 to 3.2 × 10−8, 1.2 × 10−9 to 8.0 × 10−9, and 2.5 × 10−11 to 6.3 × 10−10 mg of chlorine per propagule. Preliminary evidence suggests that the chlorine demand per propagule increases as the number of propagules per milliliter decreases. In general, conidia showed greatest resistance to chlorine inactiviation, followed by the yeast and coliforms. Inactivation by chlorine was influenced by pH, with inactivation (chlorine activity) falling in the order pH 5 > 7 > 8.  相似文献   

17.
The Chinese Erhualian pig has the highest record for litter size in the world. However, the genetic mechanism of its high prolificacy remains poorly understood. In our study, large phenotypic variations in litter size were found among Erhualian sows. Significant differences in total number born (TNB) and corpora lutea numbers were observed between sows with high and low estimated breeding values (EBVs) for TNB. To identify single nucleotide polymorphisms (SNPs) associated with TNB, a selective genomic scan was conducted on 18 sows representing the top 10% and 18 sows representing the bottom 10% of EBVs of 177 sows using Illumina Porcine SNP60 genotype data. Genome‐wide fixation coefficient (FST) values were calculated for each SNP between the high‐ and low‐EBV groups. A total of 154 SNPs were significantly differentiated loci between the two groups. Of the top 10 highest FST SNPs, rs81399474, rs81400131 and rs81405013 on SSC8 and rs81434499 and rs81434489 on SSC 12 corresponded to previously reported QTL for litter size. The other five SNPs, rs81367039 on SSC2, rs80891106 on SSC7, rs81477883 on SSC12 and rs80938898 and rs80971725 on SSC14, appeared to be novel QTL for TNB. Significant associations between rs81399474 on SSC8 and TNB were confirmed in 313 Erhualian sows. Forty genes were identified around the top 10 highest FST SNPs, of which UCHL1, adjacent to rs81399474, and RPS6KB1 and CLTC, adjacent to rs81434499, have been reported to affect the ovulation rate in pig. The findings can advance understanding of the genetic variations in litter size of pigs.  相似文献   

18.
We performed a whole‐genome scan with 110 informative microsatellites in a commercial Duroc population for which growth, fatness, carcass and meat quality phenotypes were available. Importantly, meat quality traits were recorded in two different muscles, that is, gluteus medius (GM) and longissimus thoracis et lumborum (LTL), to find out whether these traits are determined by muscle‐specific genetic factors. At the whole‐population level, three genome‐wide QTL were identified for carcass weight (SSC7, 60 cM), meat redness (SSC13, 84 cM) and yellowness (SSC15, 108 cM). Within‐family analyses allowed us to detect genome‐wide significant QTL for muscle loin depth between the 3rd and 4th ribs (SSC15, 54 cM), backfat thickness (BFT) in vivo (SSC10, 58 cM), ham weight (SSC9, 69 cM), carcass weight (SSC7, 60 cM; SSC9, 68 cM), BFT on the last rib (SSC11, 48 cM) and GM redness (SSC8, 85 cM; SSC13, 84 cM). Interestingly, there was low positional concordance between meat quality QTL maps obtained for GM and LTL. As a matter of fact, the three genome‐wide significant QTL for colour traits (SSC8, SSC13 and SSC15) that we detected in our study were all GM specific. This result suggests that QTL effects might be modulated to a certain extent by genetic and environmental factors linked to muscle function and anatomical location.  相似文献   

19.

Background

Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig.

Methods

Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program.

Results

A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance.

Conclusions

Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.  相似文献   

20.
The kinetics of photodegradation of moxifloxacin (MF) in aqueous solution (pH 2.0–12.0), and organic solvents has been studied. MF photodegradation is a specific acid-base catalyzed reaction and follows first-order kinetics. The apparent first-order rate constants (kobs) for the photodegradation of MF range from 0.69 × 10−4 (pH 7.5) to 19.50 × 10−4 min−1 (pH 12.0), and in organic solvents from 1.24 × 10−4 (1-butanol) to 2.04 × 10−4 min−1 (acetonitrile). The second-order rate constant (k2) for the [H+]-catalyzed and [OH]-catalyzed reactions are 6.61 × 10−2 and 19.20 × 10−2 M−1 min−1, respectively. This indicates that the specific base-catalyzed reaction is about three-fold faster than that of the specific acid-catalyzed reaction probably as a result of the rapid cleavage of diazabicyclononane side chain in the molecule. The kobs-pH profile for the degradation reactions is a V-shaped curve indicating specific acid-base catalysis. The minimum rate of photodegradation at pH 7–8 is due to the presence of zwitterionic species. There is a linear relation between kobs and the dielectric constant and an inverse relation between kobs and the viscosity of the solvent. Some photodegraded products of MF have been identified and pathways proposed for their formation in acid and alkaline solutions.KEY WORDS: acid-base catalysis, kinetics, moxifloxacin, photodegradation, rate–pH profile, solvent effect  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号