首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

3.
IntroductionInterleukin (IL)-21 is a key cytokine in autoimmune diseases such as systemic lupus erythematosus (SLE) by its regulation of autoantibody production and inflammatory responses. The objective of this study is to investigate the signaling capacity of IL-21 in T and B cells and assess its possible regulation by microRNA (miR)-155 and its target gene suppressor of cytokine signaling 1 (SOCS1) in SLE.MethodsThe signaling capacity of IL-21 was quantified by stimulating peripheral blood mononuclear cells (PBMCs) with IL-21 and measuring phosphorylation of STAT3 (pSTAT3) in CD4+ T cells, B cells, and natural killer cells. Induction of miR-155 by IL-21 was investigated by stimulating purified CD4+ T cells with IL-21 and measuring miR-155 expression levels. The functional role of miR-155 was assessed by overexpressing miR-155 in PBMCs from SLE patients and healthy controls (HCs) and measuring its effects on STAT3 and IL-21 production in CD4+ and CD8+ T cells.ResultsInduction of pSTAT3 in CD4+ T cells in response to IL-21 was significantly decreased in SLE patients compared to HCs (p < 0.0001). Further, expression levels of miR-155 were significantly decreased and SOCS1 correspondingly increased in CD4+ T cells from SLE patients. Finally, overexpression of miR-155 in CD4+ T cells increased STAT3 phosphorylation in response to IL-21 treatment (p < 0.01) and differentially increased IL-21 production in SLE patients compared to HCs (p < 0.01).ConclusionWe demonstrate that SLE patients have reduced IL-21 signaling capacity, decreased miR-155 levels, and increased SOCS1 levels compared to HCs. The reduced IL-21 signaling in SLE could be rescued by overexpression of miR-155, suggesting an important role for miR-155 in the reduced IL-21 signaling observed in SLE.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0660-z) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

6.
The role of IL-7 in lymphoid development and T cell homeostasis has been extensively documented. However, the role of IL-7 in human B cell development remains unclear. We used a xenogeneic human cord blood stem cell/murine stromal cell culture to study the development of CD19+ B-lineage cells expressing the IL-7R. CD34+ cord blood stem cells were cultured on the MS-5 murine stromal cell line supplemented with human G-CSF and stem cell factor. Following an initial expansion of myeloid/monocytoid cells within the initial 2 wk, CD19+/pre-BCR- pro-B cells emerged, of which 25-50% expressed the IL-7R. FACS-purified CD19+/IL-7R+ cells were larger and, when replated on MS-5, underwent a dose-dependent proliferative response to exogenous human IL-7 (0.01-10.0 ng/ml). Furthermore, STAT5 phosphorylation was induced by the same concentrations of human IL-7. CD19+/IL-7R- cells were smaller and did not proliferate on MS-5 after stimulation with IL-7. In a search for cytokines that promote human B cell development in the cord blood stem cell/MS-5 culture, we made the unexpected finding that murine IL-7 plays a role. Murine IL-7 was detected in MS-5 supernatants by ELISA, recombinant murine IL-7 induced STAT5 phosphorylation in CD19+/IL-7R+ pro-B cells and human B-lineage acute lymphoblastic leukemias, and neutralizing anti-murine IL-7 inhibited development of CD19+ cells in the cord blood stem cell/MS-5 culture. Our results support a model wherein IL-7 transduces a replicative signal to normal human B-lineage cells that is complemented by additional stromal cell-derived signals essential for normal human B cell development.  相似文献   

7.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

8.
Biologic activities of IL-16 have been well described (e.g., chemotaxis of CD4+ cells, CD25 upregulation, secretion of IL-1b, IL-4 and TNF-a secretion) but very few signaling events have been described. To gain a better understanding of how the biologic activities of IL-16 are regulated following receptor engagement (CD4) we have analyzed the activation state of numerous STAT proteins in primary human peripheral blood mononuclear cells (PBMCs) and the human monocytic cell line THP-1 following IL-16 stimulation. Of the four STAT proteins tested, only STAT6 was activated (phosphorylated) in a dose-dependant manner by IL-16. The activation of STAT6 was completely abolished when IL-16 was pre-incubated with soluble CD4 (the IL-16 cell surface receptor), demonstrating the need for CD4 engagement in STAT6 activation. These results are the first to demonstrate a link between IL-16 and STAT6 activation.  相似文献   

9.
Treatment of cell lines with type I IFNs activates the formation of IFN-stimulated gene factor 3 (STAT1/STAT2/IFN regulatory factor-9), which induces the expression of many genes. To study this response in primary cells, we treated fresh human blood with IFN-β and used flow cytometry to analyze phosphorylated STAT1, STAT3, and STAT5 in CD4(+) and CD8(+) T cells, B cells, and monocytes. The activation of STAT1 was remarkably different among these leukocyte subsets. In contrast to monocytes and CD4(+) and CD8(+) T cells, few B cells activated STAT1 in response to IFN-β, a finding that could not be explained by decreased levels of IFNAR2 or STAT1 or enhanced levels of suppressor of cytokine signaling 1 or relevant protein tyrosine phosphatases in B cells. Microarray and real-time PCR analyses revealed the induction of STAT1-dependent proapoptotic mRNAs in monocytes but not in B cells. These data show that IFN-stimulated gene factor 3 or STAT1 homodimers are not the main activators of gene expression in primary B cells of healthy humans. Notably, in B cells and, especially in CD4(+) T cells, IFN-β activated STAT5 in addition to STAT3, with biological effects often opposite from those driven by activated STAT1. These data help to explain why IFN-β increases the survival of primary human B cells and CD4(+) T cells but enhances the apoptosis of monocytes, as well as to understand how leukocyte subsets are differentially affected by endogenous type I IFNs during viral or bacterial infections and by type I IFN treatment of patients with multiple sclerosis, hepatitis, or cancer.  相似文献   

10.
11.
In this study we demonstrated that CD4(+) T cells from STAT4(-/-) mice exhibit reduced IL-12R expression and poor IL-12R signaling function. This raised the question of whether activated STAT4 participates in Th1 cell development mainly through its effects on IL-12 signaling. In a first approach to this question we determined the capacity of CD4(+) T cells from STAT4(-/-) bearing an IL-12Rbeta2 chain transgene (and thus capable of normal IL-12R expression and signaling) to undergo Th1 differentiation when stimulated by Con A and APCs. We found that such cells were still unable to exhibit IL-12-mediated IFN-gamma production. In a second approach to this question, we created Th2 cell lines (D10 cells) transfected with STAT4-expressing plasmids with various tyrosine-->phenylalanine mutations and CD4(+) T cell lines from IL-12beta2(-/-) mice infected with retroviruses expressing similarly STAT4 mutations that nevertheless express surface IL-12Rbeta2 chains. We then showed that constructs that were unable to support STAT4 tyrosine phosphorylation (in D10 cells) as a result of mutation were also incapable of supporting IL-12-induced IFN-gamma production (in IL-12Rbeta2(-/-) cells). Thus, by two complementary approaches we demonstrated that activated STAT4 has an essential downstream role in Th1 cell differentiation that is independent of its role in the support of IL-12Rbeta2 chain signaling. This implies that STAT4 is an essential element in the early events of Th1 differentiation.  相似文献   

12.
STATs play key roles in immune function. We examined the role of STAT5a/b in allograft rejection. STAT5a/b-deficient mice showed a 4-fold increased survival time of heart allografts (p < 0.01). Unlike wild type, purified STAT5a/b-/- T cells transferred to Rag1-/- recipients failed to mediate heart allograft rejection until supplemented with STAT5a/b-/- B cells. In vitro, STAT5a/b-/- T cells did not proliferate in response to Con A or alloantigens but entered apoptosis within 48 h (95%). Activated STAT5a/b-/- T cells showed increased expression of proapoptotic (caspases, DNA repair genes, TNF/TNFR-associated factor family genes) and decreased antiapoptotic mRNAs in microarrays, while Western blots confirmed reduced antiapoptotic Bcl-2 and elevated proapoptotic Bax protein expression. Interestingly, at 24 h postactivation, STAT5a/b+/+ and STAT5a/b-/- T cells produced similar levels of IL-2, IL-4, IL-10, and IFN-gamma mRNA; ELISPOT assay showed an equivalent number of IL-4- and IFN-gamma-producing T cells in both STAT5a/b+/+ and STAT5a/b-/- splenic populations. Sera from STAT5a/b+/+ and STAT5a/b-/- rejectors had donor-specific IgM, IgG1, IgG2a, and IgG2b Ab, while STAT5a/b deficiency had no impact on B cell survival or proliferation in response to LPS. Compared with allografts from STAT5a/b+/+ recipients, heart allografts from STAT5a/b-/- recipients had markedly reduced infiltration by CD4 and CD8 T cells but increased infiltration by B cells and dense endothelial deposition of C4d, a marker of humoral rejection. Thus, activated STAT5a/b-/- T cells produce cytokines prior to entering apoptosis, thereby promoting differentiation of B cells yielding donor-specific IgM and IgG Ab that mediate allograft rejection.  相似文献   

13.
TGF-beta opposes proliferative signaling by IL-2 through mechanisms that remain incompletely defined. In a well-characterized CD8(+) T cell model using wild-type and mutated IL-2 receptors, we examined the effects of TGF-beta on distinct IL-2 signaling events in CD8(+) T cells. IL-2 induces c-myc, cyclin D2, and cyclin E in a redundant manner through the Shc and STAT5 pathways. TGF-beta inhibited the ability of either the Shc or STAT5 pathway to induce these genes, as well as T cell proliferation. The inhibitory effects of TGF-beta were reversed by expression of a dominant-negative form of Smad3. TGF-beta did not impair proximal signaling by Shc or STAT5, and induction of some downstream genes, including cytokine-inducible Src homology-2-containing protein (CIS), bcl-x(L), and bcl-2, was spared. Experiments with c-fos, cyclin D2, and CIS reporter genes revealed that promoter-proximal regulatory elements dictate the sensitivity of IL-2 target genes to inhibition by TGF-beta. By leaving the Shc and STAT5 pathways functional while inhibiting their target genes selectively, TGF-beta was found to uncouple the proliferative and antiapoptotic functions of IL-2. Thus, TGF-beta is not a simple antagonist of IL-2, but rather serves to qualitatively modify the IL-2 signal to create a unique pattern of gene expression that neither cytokine can induce independently.  相似文献   

14.
15.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

16.
17.
T effector cells require selectin ligands to migrate into inflamed regions. In vitro, IL-12 promotes induction of these ligands as well as differentiation of CD4+ T cells into IFN-gamma-producing Th1 but not Th2 cells. STAT4 is strongly involved in these processes. However, the presence of selectin ligands on various T effector cell subsets in vivo points to more complex regulatory pathways. To clarify the role of the IL-12/STAT4 signaling pathway, we analyzed the impact of STAT4 deficiency on the expression of P-selectin ligands (P-lig) on CD4+ T cells in vitro and in vivo, including conditions of infection. In vitro, we found significant expression of P-lig upon activation not only in the presence, but also in the absence, of IL-12, which was independent of STAT4. TGF-beta, an alternative inducer of selectin ligands in human T cells, was not effective in murine CD4+ T cells, suggesting a role of additional signaling pathways. In vivo, a significant impact of STAT4 for the generation of P-lig+CD4+ T cells was observed for cells from peripheral lymph nodes, but not for those from spleen or lung. However, upon infection with the Th2-inducing parasite Nippostrongylus brasiliensis, P-lig expression became dependent on STAT4 signaling. Interestingly, also the frequency of IL-4-producing cells was greatly diminished in absence of STAT4. These data reveal a hitherto unknown contribution of STAT4 to the generation of Th2 cells in parasite infection and suggest that signals inducing inflammation-seeking properties in vivo vary depending on environmental conditions, such as type of organ and infection.  相似文献   

18.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. We have recently demonstrated that IL-27 has a potent antitumor activity, which is mainly mediated through CD8+ T cells, and also has an adjuvant activity to induce epitope-specific CTL in vivo. In this study, we further investigated the in vitro effect of IL-27 on CD8+ T cells of mouse spleen cells. In a manner similar to CD4+ T cells, IL-27 activated STAT1, -2, -3, -4, and -5, and augmented the expression of T-bet, IL-12Rbeta2, and granzyme B, and slightly that of perforin in naive CD8+ T cells stimulated with anti-CD3. IL-27 induced synergistic IFN-gamma production with IL-12 and proliferation of naive CD8+ T cells. Moreover, IL-27 enhanced proliferation of CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells and augmented the generation of CTL. In STAT1-deficient naive CD8+ T cells, IL-27-induced proliferation was not reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of T-bet, IL-12Rbeta2, granzyme B, and perforin. In T-bet-deficient naive CD8+ T cells, IL-27-induced proliferation was hardly reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of IL-12Rbeta2, granzyme B, and perforin. However, IL-27 still augmented the generation of CTL from T-bet-deficient CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells with increased granzyme B expression. These results suggest that IL-27 directly acts on naive CD8+ T cells in T-bet-dependent and -independent manners and augments generation of CTL with enhanced granzyme B expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号