首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male–female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present a mutational analysis on a PBP from A. transitella (AtraPBP1) to evaluate how the C-terminal helix in this protein controls pheromone binding as a function of pH. Pheromone binds tightly to AtraPBP1 at neutral pH, but the binding is much weaker at pH below 5. Deletion of the entire C-terminal helix (residues 129–142) causes more than 100-fold increase in pheromone-binding affinity at pH 5 and only a 1.5-fold increase at pH 7. A similar pH-dependent increase in pheromone binding is also seen for the H80A/H95A double mutant that promotes extrusion of the C-terminal helix by disabling salt bridges at each end of the helix. The single mutants (H80A and H95A) also exhibit pheromone binding at pH below 5, but with ∼2-fold weaker affinity. NMR and circular dichroism data demonstrate a large overall structural change in each of these mutants at pH 4.5, indicating an extrusion of the C-terminal helix that profoundly affects the overall structure of the low pH form. Our results confirm that sequestration of the C-terminal helix at low pH as seen in the recent NMR structure may serve to block pheromone binding. We propose that extrusion of these C-terminal residues at neutral pH (or by the mutations in this study) exposes a hydrophobic cleft that promotes high affinity pheromone binding.  相似文献   

2.
Moth sex pheromone receptors and deceitful parapheromones   总被引:1,自引:0,他引:1  
The insect''s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.  相似文献   

3.
The use of insect sex pheromones is an alternative technology for pest control in agriculture and forestry, which, in contrast to insecticides, does not have adverse effects on human health or environment and is efficient also against insecticide-resistant insect populations. Due to the high cost of chemically synthesized pheromones, mating disruption applications are currently primarily targeting higher value crops, such as fruits. Here we demonstrate a biotechnological method for the production of (Z)-hexadec-11-en-1-ol and (Z)-tetradec-9-en-1-ol, using engineered yeast cell factories. These unsaturated fatty alcohols are pheromone components or the immediate precursors of pheromone components of several economically important moth pests. Biosynthetic pathways towards several pheromones or their precursors were reconstructed in the oleaginous yeast Yarrowia lipolytica, which was further metabolically engineered for improved pheromone biosynthesis by decreasing fatty alcohol degradation and downregulating storage lipid accumulation. The sex pheromone of the cotton bollworm Helicoverpa armigera was produced by oxidation of fermented fatty alcohols into corresponding aldehydes. The resulting yeast-derived pheromone was just as efficient and specific for trapping of H. armigera male moths in cotton fields in Greece as a conventionally produced synthetic pheromone mixture. We further demonstrated the production of (Z)-tetradec-9-en-1-yl acetate, the main pheromone component of the fall armyworm Spodoptera frugiperda. Taken together our work describes a biotech platform for the production of commercially relevant titres of moth pheromones for pest control via yeast fermentation.  相似文献   

4.
5.
Mate-finding communication in many moths is mediated by sex pheromones produced by females. Since the differentiation of sex pheromones is often associated with speciation, it is intriguing to elucidate how the changes in sex pheromones are tracked by the pheromone recognition system of the males. Moths of the genus Ostrinia, which show distinct differentiation in female sex pheromones, are good models to study this. The present study was initiated with the aim of identifying ORs from Ostrinia scapulalis that respond to its own pheromone components, (E)-11- and (Z)-11-tetradecenyl acetates. We isolated six OR gene candidates (OscaOR3–8) from O. scapulalis. The same set of genes homologous to OscaOR3–8 were conserved in all (eight) Ostrinia species examined in addition to the previously reported OscaOR1 (tuned to (E)-11-tetradecenol) and the Or83b homologue OscaOR2. OscaOR3 not only responded to (E)-11- and (Z)-11-tetradecenyl acetates, but also to the pheromone components of the congeners, (Z)-9-, (E)-12-, and (Z)-12-tetradecenyl acetates. OscaOR4 responded with a relatively high specificity to (E)-11-tetradecenyl acetate. While OscaOR5 responded only marginally to a few pheromone components, OscaOR6–8 did not respond to any of the compounds tested. A few conserved ORs, including a unique one with very broad responsiveness, appear to be involved in the sex pheromone reception in O. scapulalis. The findings of the present study are discussed with reference to knowledge on electrophysiological response profiles of olfactory receptor neurons in Ostrinia moths.  相似文献   

6.

Background

The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control — like pheromone-based approaches — are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins.

Methodology

By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components.

Conclusion

We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH.  相似文献   

7.
8.
The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals, particularly maize. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest; however, chemical synthesis of pheromones requires expensive starting materials and catalysts and generates hazardous waste. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can then be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. First, a C14 platform strain with increased biosynthesis of myristoyl-CoA was obtained by introducing a point mutation into the α-subunit of fatty acid synthase, replacing isoleucine 1220 with phenylalanine (Fas2pI1220F). The intracellular accumulation of myristic acid increased 8.4-fold. Next, fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened in the C14 platform strain, individually and in combinations. A titer of 29.2 ± 1.6 mg L-1 Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene's overexpression led to a further 1.5-fold titer increase, reaching 93.9 ± 11.7 mg L-1 in small-scale cultivation. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1 ± 13.4 mg L-1 of Z11-14:OH was obtained. Fatty alcohols were extracted from the biomass and chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis, although full precopulatory behavior was observed less often than for the chemically synthesized pheromone blend. The study paves the way for the production of ECB pheromone by fermentation.  相似文献   

9.
In many moths, mate-finding communication is mediated by the female sex pheromones. Since differentiation of sex pheromones is often associated with speciation, it is intriguing to know how the changes in female sex pheromone have been tracked by the pheromone recognition system of the males. A male-specific odorant receptor was found to have been conserved through the evolution of sex pheromone communication systems in the genus Ostrinia (Lepidoptera: Crambidae). In an effort to characterize pheromone receptors of O. scapulalis, which uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone, we cloned a gene (OscaOR1) encoding a male-specific odorant receptor. In addition, we cloned a gene of the Or83b family (OscaOR2). Functional assays using Xenopus oocytes co-expressing OscaOR1 and OscaOR2 have shown that OscaOR1 is, unexpectedly, a receptor of (E)-11-tetradecenol (E11-14:OH), a single pheromone component of a congener O. latipennis. Subsequent studies on O. latipennis showed that this species indeed has a gene orthologous to OscaOR1 (OlatOR1), a functional assay of which confirmed it to be a gene encoding the receptor of E11-14:OH. Furthermore, investigations of six other Ostrinia species have revealed that all of them have a gene orthologous to OscaOR1, although none of these species, except O. ovalipennis, a species most closely related to O. latipennis, uses E11-14:OH as the pheromone component. The present findings suggest that the male-specific receptor of E11-14:OH was acquired before the divergence of the genus Ostrinia, and functionally retained through the evolution of this genus.  相似文献   

10.
Pheromone-binding proteins (PBPs) were formerly thought to act as passive pheromone carriers. However, recent studies, particularly in Drosophila melanogaster, suggest that PBPs are involved in the recognition of semiochemicals, thus making ligand-binding studies more meaningful. Previously, we cloned three PBPs from Spodoptera litura (Slit), and showed that SlitPBP1 is much more abundant than the other two, particularly in male antennae. To investigate the ligand specificity of SlitPBP1, we expressed the protein in a bacterial system and performed binding experiments with the three components of the specific sex pheromones (Z9-14:Ac, Z9,E11-14:Ac and Z9,E12-14:Ac), as well as with 26 volatile ligands. The results indicated that SlitPBP1 bound all three sex pheromone components with dissociation constants between 0.6 and 1.1 μM. The same protein also bound with comparable affinities several pheromone analogs, but not plant volatiles. The presence of a double bond was the most important element for a strong binding, while its position and configuration also affected the affinity. Finally, the binding of pheromone components is strongly affected by pH, showing a critical pH value corresponding to isoelectric point of the protein. This suggests that a pH-dependent conformational mechanism might exist in SlitPBP1 for pheromone binding and release.  相似文献   

11.
Sex pheromone components of the Japanese rice leaffolder moth, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) were identified from ovipositor extracts of virgin females as (Z)-11-octadecenal, (Z)-13-octadecenal, (Z)-11-octadecen-1-ol and (Z)-13-octadecen-1-ol at a ratio of 11:100:24:36 by GC-EAD, GC, GC-MS. The total amount was estimated to be ca.0.9 ng/female. Field bioassays in Kagoshima, Japan, showed that the two aldehydes are essential for male attraction and the alcohols may have a synergistic effect on the aldehydes. A rubber septum containing 0.9 mg of the four components at the natural ratio was shown to be an effective lure for monitoring this pest in Japan. The above four components are quite different from the sex pheromone components reported previously for the same species of either Philippine or Indian origin; components were shown to be (Z)-11-hexadecenyl acetate and (Z)-13-octadecenyl acetate at a ratio of 98:2 in the Philippine blend and 1:10 in the Indian blend. Furthermore, in the field tests in Japan, neither the Philippine blend nor the Indian blend showed any attractive activity, while the Japanese blend attracted significant numbers of male moths. These results suggest that there are remarkable geographical variations in the sex pheromone composition of this species or there are several distinct species using different sex pheromone blends.  相似文献   

12.
The red clover casebearer, Coleophora deauratella Lienig & Zeller (Lepidoptera: Coleophoridae), is an invasive pest of Trifolium species (Fabaceae) in Canada. We identified candidate sex pheromone components from female pheromone gland extracts using coupled gas chromatographic–electroantennographic analysis detection. Three compounds elicited an electrophysiological response from antennae and were identified as: (Z)‐7‐dodecenyl acetate, (Z)‐5‐dodecenyl acetate, and (Z)‐7‐dodecen‐1‐ol. Field tests of the candidate pheromone components revealed that males were attracted to a binary mixture of (Z)‐7‐dodecenyl acetate and (Z)‐5‐dodecenyl acetate. Male moth trap capture was greatest in traps baited with lures containing 100:10 or 100:20 ratios of these pheromone components, respectively. Trap capture was reduced when (Z)‐5‐dodecenyl acetate was present below 10 or above 20% of (Z)‐7‐dodecenyl acetate. Equal numbers of male moths were captured in traps baited with 10, 100, and 1 000 μg of the attractive binary mixture. These findings allow for the development of a pheromone‐based monitoring system for this invasive pest of clover in Canada.  相似文献   

13.
《Journal of Asia》2020,23(4):935-941
Hellula undalis is a harmful insect pest of green mustard in the Mekong Delta of Vietnam. In order to establish a tool for a sustainable pest control program, the sex pheromone of H. undalis inhabiting the Mekong Delta was examined. GC-EAD and GC–MS analyses of pheromone gland extracts from the virgin females elucidated three new components, (Z)-11-tetradecenyl acetate (Z11-14:OAc), (Z)-11-hexadecenal (Z11-16:Ald), and (11E,13E)-11,13-hexadecadien-1-ol, in addition to the known pheromone component (11E,13E)-11,13-hexadecadienal (E11,E13-16:Ald). Double bond positions of the two monoenyl components were determined by GC–MS analysis of the pheromone extract treated with dimethyl disulfide. On the other hand, GC–MS analysis of the female body extract detected the unsaturated hydrocarbon (3Z,6Z,9Z)-3,6,9-tricosatriene (Z3,Z6,Z9-23:H). Field examinations of their synthetic compounds indicated the significant role of E11,E13-16:Ald as a major component and a clear synergistic effect of the two monoenyl compounds as a minor component. Although the 3:3:7 mixture of Z11-14:OAc, E11-16:Ald, and E11,E13-16:Ald captured the largest number of males among the tested mixtures, the activity was still quite a bit lower than that of virgin females. However, the 3:3:7:1 mixture, which was prepared by adding a small amount of Z3,Z6,Z9-23:H to the 3:3:7 ternary lure, succeeded in attracting males more powerfully than the females did. This strong synergistic effect was not observed when the triene was added to unmixed E11,E13-16:Ald, indicating important roles of not only the triene but also the two monoenyl compounds as natural pheromone components.  相似文献   

14.
The effects of plant-derived chemicals (volatiles) on the attraction of the Spodoptera litura moth to sex pheromones were evaluated using an electroantennogram (EAG). Neuronal responses of male moths to sex pheromone mixtures (SPs) (a 9:1 mixture of synthetic (9Z,11E)-9,11-tetraddecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-9,12-tetradecadienyl acetate (Z9E12-14:OAc)) and to SPs mixtures with eight plant volatiles (benzaldehyde, (E)-β-caryophyllene, phenylacetaldehyde, 2,6-nonadienal, benzyl alcohol, racemic linalool, longifolene, and (E)-β-ocimene) were also measured. Then, wind tunnels and field trapping bioassays were conducted to determine the influence of plant volatiles on S. litura moth behavioral responses to SPs. The results indicated that benzaldehyde, phenylacetaldehyde, and benzyl alcohol significantly enhanced, and longifolene, (E)-β-caryophyllene, and (E)-β-ocimene had no significant effect on the attractions to SPs, whereas racemic linalool significantly decreased the attraction of male S. litura moths to SPs throughout the olfactory pathway. 2,6-Nonadienal significantly enhanced olfactory responses, but had no significant effect on output behavior. These findings provide foundations in utilization of plant volatiles and sex pheromones to manage the pest and other agricultural pests.  相似文献   

15.
The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11–16: Ald) and (Z)-9-hexadecenal (Z9–16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11–16: Ald and Z9–16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11–16:Ald and Z9–16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11–16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9–16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11–16: Ald and Z9–16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11–16: Ald or Z9–16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors.  相似文献   

16.
Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.  相似文献   

17.
The majority of moth species utilize compounds derived from de novo synthesized fatty acids as their sex pheromones (type I). In contrast, species belonging to two recently diverged moth families, Arctiidae and Geometridae, utilize alkenes and their epoxides, which are derived from dietary essential fatty acids (EFAs), as their sex pheromones (type II). In the latter species, EFAs are considered to be converted into alkenes, often after chain elongation, in specialized cells called oenocytes. These alkenes are transported through the hemolymph to the pheromone gland, from which they are secreted with or without further modifications. We confirmed that the appearance of EFA-derived alkenes in the hemolymph was closely associated with the completion of pheromone gland formation in an arctiid moth Eilema japonica. Analyses of the hemolymph of several moth species utilizing type-I sex pheromones demonstrated the occurrence of (Z,Z,Z)-3,6,9-tricosatriene (T23), a typical type-II component, in the hemolymph of a noctuid Mamestra brassicae and two crambids Ostrinia furnacalis and Ostrinia scapulalis. Our results demonstrated that moths utilizing type-I pheromones have the ability to synthesize type-II sex pheromones, and suggested that recently diverged groups of moths may have secondarily exploited EFA-derived alkenes as sex pheromones.  相似文献   

18.
Right-handed RNA duplexes of (CG)n sequence undergo salt-induced helicity reversal, forming left-handed RNA double helices (Z-RNA). In contrast to the thoroughly studied Z-DNA, no Z-RNA structure of natural origin is known. Here we report the NMR structure of a half-turn, left-handed RNA helix (CGCGCG)2 determined in 6 M NaClO4. This is the first nucleic acid motif determined at such high salt. Sequential assignments of non-exchangeable proton resonances of the Z-form were based on the hitherto unreported NOE connectivity path [H6(n)-H5′/H5″(n)-H8(n+1)-H1′(n+1)-H6(n+2)] found for left-handed helices. Z-RNA structure shows several conformational features significantly different from Z-DNA. Intra-strand but no inter-strand base stacking was observed for both CpG and GpC steps. Helical twist angles for CpG steps have small positive values (4–7°), whereas GpC steps have large negative values (−61°). In the full-turn model of Z-RNA (12.4 bp per turn), base pairs are much closer to the helix axis than in Z-DNA, thus both the very deep, narrow minor groove with buried cytidine 2′-OH groups, and the major groove are well defined. The 2′-OH group of cytidines plays a crucial role in the Z-RNA structure and its formation; 2′-O-methylation of cytidine, but not of guanosine residues prohibits A to Z helicity reversal.  相似文献   

19.
Premating behaviors mediated by pheromones play pivotal roles in animal mating choices. In natural populations of the striped stem borer Chilo suppressalis and the rice leaf roller Cnaphalocrocis medinalis in the rice field habitat, we discovered that Z11-16:Ald, a major component of the C. suppressalis pheromone, modulated the premating behavior of C. medinalis. Z11-16:Ald evoked a strong olfactory response in male antennae and strongly inhibited the sex pheromone trapping of male C. medinalis in the field. The functions of three C. medinalis sex pheromone receptor genes (CmedPR1–3) were verified through heterologous expression in Xenopus oocytes. CmedPR1 responded to Z11-18:OH and Z11-18:Ald, as well as the interspecific pheromone compound Z11-16:Ac of sympatric species; CmedPR2 responded to Z13-18:OH and Z13-18:Ald, as well as the sex pheromone compounds Z11-16:Ald and Z9-16:Ald of sympatric species; and CmedPR3 responded to Z11-18:OH and Z13-18:OH, as well as the interspecific pheromones Z11-16:OH, Z9-16:Ald, Z11-16:Ac, and Z11-16:Ald of sympatric species. Thus, CmedPR2 and CmedPR3 share the ligand Z11-16:Ald, which is not a component of the C. medinalis sex pheromone. Therefore, the sex pheromones of interspecific species affected the input of neural signals by stimulating the sex pheromone receptors on the antennae of male C. medinalis moths, thereby inhibiting the olfactory responses of the male moths to the sex pheromones. Our results demonstrate chemical communication among sympatric species in the rice field habitat, the recognition of intra- and interspecific sex pheromones by olfactory receptors, and how insect premating behaviors are modulated to possibly affect resource partitioning.  相似文献   

20.
The Japanese persimmon treeborer, Synanthedon tenuis (Butler) (Lepidoptera: Sesiidae), is a harmful pest of persimmon trees (Diospyros spp.). Because males of this species are known to be attracted by (3Z,13Z)-3,13-octadecadienyl acetate (Z3,Z13-18:OAc), a mating disruptant composed of a 1:1 mixture of Z3,Z13-18:OAc and the (3E,13Z)-isomer, the original target of which is an allied pest, S. hector (Butler), has been diverted to control S. tenuis. However, the sex pheromone secreted by S. tenuis females has not been characterized. Analyses of pheromone gland extracts using gas chromatography (GC) equipped with an electroantennographic detector (GC-EAD) and GC combined with mass spectrometry (GC–MS) detected only Z3,Z13-18:OAc, and no other known sesiid pheromone components were found. In a persimmon orchard, S. tenuis males were selectively attracted by a lure baited with Z3,Z13-18:OAc among four geometrical isomers of 3,13-octadecadienyl acetate, indicating that males strictly discriminated among the configurations of the two double bonds. Lures baited with single Z3,Z13-18:OAc attracted only S. tenuis. Further field experiments revealed that the attractiveness of Z3,Z13-18:OAc is significantly inhibited by the addition of the (3E,13Z) isomer or the parent alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号