首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Mildly deleterious mutation has been invoked as a leading explanation for a diverse array of observations in evolutionary genetics and molecular evolution and is thought to be a significant risk of extinction for small populations. However, much of the empirical evidence for the deleterious-mutation process derives from studies of Drosophila melanogaster, some of which have been called into question. We review a broad array of data that collectively support the hypothesis that deleterious mutations arise in flies at rate of about one per individual per generation, with the average mutation decreasing fitness by about only 2% in the heterozygous state. Empirical evidence from microbes, plants, and several other animal species provide further support for the idea that most mutations have only mildly deleterious effects on fitness, and several other species appear to have genomic mutation rates that are of the order of magnitude observed in Drosophila. However, there is mounting evidence that some organisms have genomic deleterious mutation rates that are substantially lower than one per individual per generation. These lower rates may be at least partially reconciled with the Drosophila data by taking into consideration the number of germline cell divisions per generation. To fully resolve the existing controversy over the properties of spontaneous mutations, a number of issues need to be clarified. These include the form of the distribution of mutational effects and the extent to which this is modified by the environmental and genetic background and the contribution of basic biological features such as generation length and genome size to interspecific differences in the genomic mutation rate. Once such information is available, it should be possible to make a refined statement about the long-term impact of mutation on the genetic integrity of human populations subject to relaxed selection resulting from modern medical procedures.  相似文献   

2.
High rates of mildly deleterious mutation could cause the extinction of small populations, reduce neutral genetic variation and provide an evolutionary advantage for sex. In the first attempts to estimate the rate of mildly deleterious mutation, Mukai and Ohnishi allowed spontaneous mutations to accumulate on D. melanogaster second chromosomes shielded from recombination and selection. Viability of the shielded chromosomes appeared to decline rapidly, implying a deleterious mutation rate on the order of one per zygote per generation. These results have been challenged, however; at issue is whether Mukai and Ohnishi may have confounded viability declines caused by mutation with declines resulting from environmental changes or other extraneous factors. Here, using a method not sensitive to non-mutational viability changes, I reanalyse the previous mutation-accumulation (MA) experiments, and report the results of a new one. I show that in each of four experiments, including Mukai's two experiments, viability declines due to mildly deleterious mutations were rapid. The results give no support for the view that Mukai overestimated the declines. Although there is substantial variation in estimates of genomic mutation rates from the experiments, this variation is probably due to some combination of sampling error, strain differences and differences in assay conditions, rather than to failure to distinguish mutational and non-mutational viability changes.  相似文献   

3.
An understanding of the forces that contribute to the phylogenetically widespread phenomenon of sexual reproduction has posed a longstanding problem in evolutionary biology. Mutational theories contend that sex can be maintained when the deleterious mutation rate is sufficiently high, although empirical evidence is equivocal and experimental studies are rare. To test the influence of mutation on the evolution of obligate outcrossing, I introduced a genetic polymorphism for breeding system into populations of the nematode Caenorhabditis elegans with high- and low-mutation rate genetic backgrounds and tracked the change in frequency of females, hermaphrodites, and males over approximately 21 generations. Hermaphrodites invaded all populations, regardless of mutational background. However, experimental populations with elevated mutation rates experienced more outcrossing and greater retention of females. This provides experimental evidence consistent with deleterious mutational explanations for the evolution of sex in principle, but the action of other processes is required to explain the evolution of sex in entirety.  相似文献   

4.
Griswold CK  Whitlock MC 《Genetics》2003,165(4):2181-2192
Pleiotropy allows for the deterministic fixation of bidirectional mutations: mutations with effects both in the direction of selection and opposite to selection for the same character. Mutations with deleterious effects on some characters can fix because of beneficial effects on other characters. This study analytically quantifies the expected frequency of mutations that fix with negative and positive effects on a character and the average size of a fixed effect on a character when a mutation pleiotropically affects from very few to many characters. The analysis allows for mutational distributions that vary in shape and provides a framework that would allow for varying the frequency at which mutations arise with deleterious and positive effects on characters. The results show that a large fraction of fixed mutations will have deleterious pleiotropic effects even when mutation affects as little as two characters and only directional selection is occurring, and, not surprisingly, as the degree of pleiotropy increases the frequency of fixed deleterious effects increases. As a point of comparison, we show how stabilizing selection and random genetic drift affect the bidirectional distribution of fixed mutational effects. The results are then applied to QTL studies that seek to find loci that contribute to phenotypic differences between populations or species. It is shown that QTL studies are biased against detecting chromosome regions that have deleterious pleiotropic effects on characters.  相似文献   

5.
The mutability of bacteriophages offers a particular advantage in the treatment of bacterial infections not afforded by other antimicrobial therapies. When phage-resistant bacteria emerge, mutation may generate phage capable of exploiting and thus limiting population expansion among these emergent types. However, while mutation potentially generates beneficial variants, it also contributes to a genetic load of deleterious mutations. Here, we model the influence of varying phage mutation rate on the efficacy of phage therapy. All else being equal, phage types with historical mutation rates of approximately 0.1 deleterious mutations per genome per generation offer a reasonable balance between beneficial mutational diversity and deleterious mutational load. We determine that increasing phage inoculum density can undesirably increase the peak density of a mutant bacterial class by limiting the in situ production of mutant phage variants. For phage populations with minimal genetic load, engineering mutation rate increases beyond the mutation-selection balance optimum may provide even greater protection against emergent bacterial types, but only with very weak selective coefficients for de novo deleterious mutations (below approximately 0.01). Increases to the mutation rate beyond the optimal value at mutation-selection balance may therefore prove generally undesirable.  相似文献   

6.
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate–enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.  相似文献   

7.
The Effect of Deleterious Mutations on Neutral Molecular Variation   总被引:12,自引:12,他引:0  
Selection against deleterious alleles maintained by mutation may cause a reduction in the amount of genetic variability at linked neutral sites. This is because a new neutral variant can only remain in a large population for a long period of time if it is maintained in gametes that are free of deleterious alleles, and hence are not destined for rapid elimination from the population by selection. Approximate formulas are derived for the reduction below classical neutral values resulting from such background selection against deleterious mutations, for the mean times to fixation and loss of new mutations, nucleotide site diversity, and number of segregating sites. These formulas apply to random-mating populations with no genetic recombination, and to populations reproducing exclusively asexually or by self-fertilization. For a given selection regime and mating system, the reduction is an exponential function of the total mutation rate to deleterious mutations for the section of the genome involved. Simulations show that the effect decreases rapidly with increasing recombination frequency or rate of outcrossing. The mean time to loss of new neutral mutations and the total number of segregating neutral sites are less sensitive to background selection than the other statistics, unless the population size is of the order of a hundred thousand or more. The stationary distribution of allele frequencies at the neutral sites is correspondingly skewed in favor of rare alleles, compared with the classical neutral result. Observed reductions in molecular variation in low recombination genomic regions of sufficiently large size, for instance in the centromere-proximal regions of Drosophila autosomes or in highly selfing plant populations, may be partly due to background selection against deleterious mutations.  相似文献   

8.
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life‐history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation‐accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.  相似文献   

9.
Finite parthenogenetic populations with high genomic mutation rates accumulate deleterious mutations if back mutations are rare. This mechanism, known as Muller's ratchet, can explain the rarity of parthenogenetic species among so called higher organisms. However, estimates of genomic mutation rates for deleterious alleles and their average effect in the diploid condition in Drosophila suggest that Muller's ratchet should eliminate parthenogenetic insect populations within several hundred generations, provided all mutations are unconditionally deleterious. This fact is inconsistent with the existence of obligatory parthenogenetic insect species. In this paper an analysis of the extent to which compensatory mutations can counter Muller's ratchet is presented. Compensatory mutations are defined as all mutations that compensate for the phenotypic effects of a deleterious mutation. In the case of quantitative traits under stabilizing selection, the rate of compensatory mutations is easily predicted. It is shown that there is a strong analogy between the Muller's ratchet model of Felsenstein (1974) and the quantitative genetic model considered here, except for the frequency of compensatory mutations. If the intensity of stabilizing selection is too small or the mutation rate too high, the optimal genotype becomes extinct and the population mean drifts from the optimum but still reaches a stationary distribution. This distance is essentially the same as predicted for sexually reproducing populations under the same circumstances. Hence, at least in the short run, compensatory mutations for quantitative characters are as effective as recombination in halting the decline of mean fitness otherwise caused by Muller's ratchet. However, it is questionable whether compensatory mutations can prevent Muller's ratchet in the long run because there might be a limit to the capacity of the genome to provide compensatory mutations without eliminating deleterious mutations at least during occasional episodes of sex.  相似文献   

10.
11.
What changes occur when a natural protein that had been under low mutation rates is subjected to a neutral drift at high mutational loads, thus generating genetically diverse (polymorphic) gene ensembles that all maintain the protein's original function and structure? To address this question we subjected large populations of TEM-1 beta-lactamase to a prolonged neutral drift, applying high mutation rates and purifying selection to maintain TEM-1's existing penicillinase activity. Purging of deleterious mutations and enrichment of beneficial ones maintained the sequence of these ensembles closer to TEM-1's family consensus and inferred ancestor. In particular, back-to-consensus/ancestor mutations that increase TEM-1's kinetic and thermodynamic stability were enriched. These acted as global suppressors and enabled the tolerance of a broad range of deleterious mutations, thus further increasing the genetic diversity of the drifting populations. The probability of a new function emerging (cefotaxime degradation) was also substantially increased in these ensembles owing to the presence of many gene variants carrying the global suppressors. Our findings indicate the unique features of large, polymorphic neutral ensembles generated under high mutational loads and prompt the speculation that the progenitors of today's proteins may have evolved under high mutational loads. The results also suggest that predictable back-to-consensus/ancestor changes can be used in the laboratory to generate highly diverse and evolvable gene libraries.  相似文献   

12.
A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii when selection is fast compared to mutation (). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution experiments and suggest future experimental directions.  相似文献   

13.
Evolution of sex in RNA viruses   总被引:5,自引:0,他引:5  
The distribution of deleterious mutations in a population of organisms is determined by the opposing effects of two forces, mutation pressure and selection. If mutation rates are high, the resulting mutation-selection balance can generate a substantial mutational load in the population. Sex can be advantageous to organisms experiencing high mutation rates because it can either buffer the mutation-selection balance from genetic drift, thus preventing any increases in the mutational load (Muller, 1964: Mut. Res. 1, 2), or decrease the mutational load by increasing the efficiency of selection (Crow, 1970: Biomathematics 1, 128). Muller's hypothesis assumes that deleterious mutations act independently, whereas Crow's hypothesis assumes that deleterious mutations interact synergistically, i.e., the acquisition of a deleterious mutation is proportionately more harmful to a genome with many mutations than it is to a genome with a few mutations. RNA viruses provide a test for these two hypotheses because they have extremely high mutation rates and appear to have evolved specific adaptations to reproduce sexually. Population genetic models for RNA viruses show that Muller's and Crow's hypotheses are also possible explanations for why sex is advantageous to these viruses. A re-analysis of published data on RNA viruses that are cultured by undiluted passage suggests that deleterious mutations in such viruses interact synergistically and that sex evolved there as a mechanism to reduce the mutational load.  相似文献   

14.
The 'mutational deterministic' hypothesis proposes that a high genomic rate of deleterious mutation (U) might maintain sexual reproduction. Our recent work casts doubt on this, as we estimate a low U for sexually reproducing species with short generation times. Following criticism by Kondrashov, here we defend our methods for estimating U and challenge the mutational deterministic hypothesis.  相似文献   

15.
Recent theoretical studies have illustrated the potential role of spontaneous deleterious mutation as a cause of extinction in small populations. However, these studies have not addressed several genetic issues, which can in principle have a substantial influence on the risk of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation accumulation by progressively magnifying the selective effects of mutations, and the occurrence of beneficial mutations, which can offset the effects of previous deleterious mutations. In stochastic simulations of small populations (effective sizes on the order of 100 or less), we show that both synergistic epistasis and the rate of beneficial mutation must be unrealistically high to substantially reduce the risk of extinction due to random fixation of deleterious mutations. However, in analytical calculations based on diffusion theory, we show that in large, outcrossing populations (effective sizes greater than a few hundred), very low levels of beneficial mutation are sufficient to prevent mutational decay. Further simulation results indicate that in populations small enough to be highly vulnerable to mutational decay, variance in deleterious mutational effects reduces the risk of extinction, assuming that the mean deleterious mutational effect is on the order of a few percent or less. We also examine the magnitude of outcrossing that is necessary to liberate a predominantly selfing population from the threat of long-term mutational deterioration. The critical amount of outcrossing appears to be greater than is common in near-obligately selfing plant species, supporting the contention that such species are generally doomed to extinction via random drift of new mutations. Our results support the hypothesis that a long-term effective population size in the neighborhood of a few hundred individuals defines an approximate threshold, below which outcrossing populations are vulnerable to extinction via fixation of deleterious mutations, and above which immunity is acquired.  相似文献   

16.
Evolutionary stability of dioecy and nuclear gynodioecy in higher plants requires that females produce over twice as many successful seeds as hermaphrodites. This fitness differential is widely thought to derive primarily from the advantages of outcrossing caused by high selfing rates and inbreeding depression in the hermaphrodite. This study hypothesized that (i) extraordinarily high deleterious mutation rates are necessary to double female seed success due to outcrossing, and (ii) the large difference in outcrossing rates between sex morphs causes differential purging of these mutations, resulting in additional genetic selection on male sterility. Using genetically explicit models, I showed that the phenotypic outcrossing advantage requires at least one new highly recessive deleterious mutation per genome per generation, regardless of selection coefficient. However, under this mutational regime, differential purging created strong genetic selection against recessive male sterility that overwhelmed the phenotypic selection in favour of outcrossing. In very small populations and for dominant male sterility, this genetic selection was weaker or absent. This first genetically explicit study of the outcrossing advantage of unisexual females may shed new light on both the genetic and selective conditions for the evolution of gynodioecy and dioecy.  相似文献   

17.
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites—both in the presence and absence of interference amongst deleterious mutations—and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.  相似文献   

18.
Previous attempts to model the joint action of selection and mutation in finite populations have treated population size as being independent of the mutation load. However, the accumulation of deleterious mutations is expected to cause a gradual reduction in population size. Consequently, in small populations random genetic drift will progressively overpower selection making it easier to fix future mutations. This synergistic interaction, which we refer to as a mutational melt-down, ultimately leads to population extinction. For many conditions, the coefficient of variation of extinction time is less than 0.1, and for species that reproduce by binary fission, the expected extinction time is quite insensitive to population carrying capacity. These results are consistent with observations that many cultures of ciliated protozoans and vertebrate fibroblasts have characteristic extinction times. The model also predicts that clonal lineages are unlikely to survive more than 104 to 105 generations, which is consistent with existing data on parthenogenetic animals. Contrary to the usual view that Muller's ratchet does more damage when selection is weak, we show that the mean extinction time declines as mutations become more deleterious. Although very small sexual populations, such as self-fertilized lines, are subject to mutational meltdowns, recombination effectively eliminates the process when the effective population size exceeds a dozen or so. The concept of the effective mutation load is developed, and several procedures for estimating it are described. It is shown that this load can be reduced substantially when mutational effects are highly variable.  相似文献   

19.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

20.
Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号