首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
With three recent market approvals and several inhibitors in advanced stages of development, the hepatitis C virus (HCV) NS3/4A protease represents a successful target for antiviral therapy against hepatitis C. As a consequence of dealing with viral diseases in general, there are concerns related to the emergence of drug resistant strains which calls for development of inhibitors with an alternative binding-mode than the existing highly optimized ones. We have previously reported on the use of phenylglycine as an alternative P2 residue in HCV NS3/4A protease inhibitors. Herein, we present the synthesis, structure–activity relationships and in vitro pharmacokinetic characterization of a diverse series of linear and macrocyclic P2 pyrimidinyloxyphenylglycine based inhibitors. With access to vinyl substituents in P3, P2 and P1′ positions an initial probing of macrocyclization between different positions, using ring-closing metathesis (RCM) could be performed, after addressing some synthetic challenges. Biochemical results from the wild type enzyme and drug resistant variants (e.g., R155 K) indicate that P3–P1′ macrocyclization, leaving the P2 substituent in a flexible mode, is a promising approach. Additionally, the study demonstrates that phenylglycine based inhibitors benefit from p-phenylpyrimidinyloxy and m-vinyl groups as well as from the combination with an aromatic P1 motif with alkenylic P1′ elongations. In fact, linear P2–P1′ spanning intermediate compounds based on these fragments were found to display promising inhibitory potencies and drug like properties.  相似文献   

2.
A series of tripeptidic acylsulfonamide inhibitors of HCV NS3 protease were prepared that explored structure-activity relationships (SARs) at the P4 position, and their in vitro and in vivo properties were evaluated. Enhanced potency was observed in a series of P4 ureas; however, the PK profiles of these analogues were less than optimal. In an effort to overcome the PK shortcomings, modifications to the P3-P4 junction were made. This included a strategy in which one of the two urea N–H groups was either N-methylated or replaced with an oxygen atom. The former approach provided a series of regioisomeric N-methylated ureas while the latter gave rise to P4 reverse carbamates, both of which retained potent NS3 inhibitory properties while relying upon an alternative H-bond donor topology. Details of the SARs and PK profiles of these analogues are provided.  相似文献   

3.
A novel unsymmetrical structural class of HCV NS5A inhibitors showing picomolar range antiviral activity has been identified. An unsymmetrical lead compound 2, generated from a substructure of a known symmetrical inhibitor 1, was optimized by extension of its substituents to interact with the hitherto unexplored site of the target protein. This approach afforded novel highly potent unsymmetrical inhibitor 20, which not only equally inhibited HCV genotypes1a, 1b, and 2a with EC50 values in the picomolar range, but also inhibited the 1a Q30K mutant induced by a launched symmetrical inhibitor daclatasvir with an EC50 in the low nanomolar range.  相似文献   

4.
Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD).  相似文献   

5.
HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination regimen. Herein, we describe the discovery and characterization of silyl proline-containing HCV NS5A inhibitor MK-8325 with good pan-genotype activity and acceptable pharmacokinetic properties.  相似文献   

6.
Herein, we report the synthesis and structure–activity relationship studies of new analogs of boceprevir 1 and telaprevir 2. Introduction of azetidine and spiroazetidines as a P2 substituent that replaced the pyrrolidine moiety of 1 and 2 led to the discovery of a potent hepatitis C protease inhibitor 37c (EC50 = 0.8 μM).  相似文献   

7.
Efforts to improve the genotype 1a potency and pharmacokinetics of earlier naphthyridine-based HCV NS5A inhibitors resulted in the discovery of a novel series of pyrido[2,3-d]pyrimidine compounds, which displayed potent inhibition of HCV genotypes 1a and 1b in the replicon assay. SAR in this system revealed that the introduction of amides bearing an additional ‘E’ ring provided compounds with improved potency and pharmacokinetics. Introduction of a chiral center on the amide portion resulted in the observation of a stereochemical dependence for replicon potency and provided a site for the attachment of functional groups useful for improving the solubility of the series. Compound 21 was selected for administration in an HCV-infected chimpanzee. Observation of a robust viral load decline provided positive proof of concept for inhibition of HCV replication in vivo for the compound series.  相似文献   

8.
目的:建立丙型肝炎病毒NS3/4A丝氨酸蛋白酶胞内荧光检测方法。方法:利用EGFP分子内合适位点可以插入一定长度外源片段而不影响荧光性能的特性,构建EGFP分子内插入NS3/4A蛋白酶识别序列NS5AB的EGFP-5AB重组分子。将EGFP-5AB与NS3/4A蛋白酶共表达,若短肽链被切断,则EGFP的两个部分解离,荧光消失,从而可以监测HCV NS3/4A蛋白酶的存在。通过将NS5AB插入三种不同位点,寻找最合适的插入位点;将EGFP-5AB转染进入不同宿主细胞,验证其在不同细胞的表达情况并选择最佳宿主细胞。结果:确定EGFP 173-174氨基酸位点是合适的插入位点;确定CHO-K1为理想的荧光检测系统宿主细胞;在构建的细胞模型中,能够检测到EGFP被切割后的条带,但检测不到荧光信号,说明EGFP-5AB蛋白被有效切割,该方法可以检测到NS3/4A丝氨酸蛋白酶的存在。结论:成功构建了一种在哺乳动物细胞中检测NS3/4A蛋白酶切割活性的荧光检测方法。  相似文献   

9.
The non-structural protein NS2B/NS3 serine-protease complex of the dengue virus (DENV) is required for the maturation of the viral polyprotein. Dissociation of the NS2B cofactor from NS3 diminishes the enzymatic activity of the complex. In this study, we identified a small molecule inhibitor that interferes with the interaction between NS2B and NS3 using structure-based screening and a cell-based viral replication assay. A library containing 661,417 small compounds derived from the Molecular Operating Environment lead-like database was docked to the NS2B/NS3 structural model. Thirty-nine compounds with high scores were tested in a secondary screening using a cell-based viral replication assay. SK-12 was found to inhibit replication of all DENV serotypes (EC50 = 0.74–4.92 μM). In silico studies predicted that SK-12 pre-occupies the NS2B-binding site of NS3. Steady-state kinetics using a fluorogenic short peptide substrate demonstrated that SK-12 is a noncompetitive inhibitor against the NS2B/NS3 protease. Inhibition to Japanese encephalitis virus by SK-12 was relatively weak (EC50 = 29.81 μM), and this lower sensitivity was due to difference in amino acid at position 27 of NS3. SK-12 is the promising small-molecule inhibitor that targets the interaction between NS2B and NS3.  相似文献   

10.
A novel unsymmetrical structural class of orally bioavailable hepatitis C virus (HCV) nonstructural 5A protein (NS5A) inhibitors has been generated by improving both the solubility and membrane permeability of the lead compound found in our previous work. The representative compound 14, with a 5-hydroxymethylpyrazine group and a 3-t-butylpropargyl group on each side of the molecule, exhibited the best oral bioavailability in this study, inhibiting not only the HCV genotype 1a, 1b, 2a, and 3a replicons with EC50 values in the picomolar range, but also inhibited 1a Q30 mutants induced by launched symmetrical inhibitors with EC50 values in the low nanomolar range.  相似文献   

11.
Discovering a potential drug for HCV treatment is a challenging task in the field of drug research. This study initiates with computational screening and modeling of promising ligand molecules. The foremost modeling method involves the identification of novel compound and its molecular interaction based on pharmacophore features. A total of 197 HCV compounds for NS3/4A protein target were screened for our study. The pharmacophore models were generated using PHASE module implemented in Schrodinger suite. The pharmacophore features include one hydrogen bond acceptor, one hydrogen bond donor, and three hydrophobic sites. As a result, based on mentioned hypothesis the model ADHHH.159 corresponds to the CID 59533233. Furthermore, docking was performed using maestro for all the 197 compounds. Among these, the CID 59533313 and 59533233 possess the best binding energy of ?11.75 and ?10.40 kcal/mol, respectively. The interactions studies indicated that the CID complexed with the NS3/4A protein possess better binding affinity with the other compounds. Further the compounds were subjected to calculate the ADME properties. Therefore, it can be concluded that these two compounds could be a potential alternative drug for the development of HCV.  相似文献   

12.
Hepatitis C virus (HCV) exists in six major genotypes. Compared with the 1b enzyme, genotype 2b HCV polymerase exhibits a more than 100-fold reduction in sensitivity to the indole-N-acetamide class of non-nucleoside inhibitors. These compounds have been shown to bind in a pocket occupied by helix A of the mobile Λ1 loop in the apoenzyme. The three-dimensional structure of the HCV polymerase from genotype 2b was determined to 1.9-Å resolution and compared with the genotype 1b enzyme. This structural analysis suggests that genotypic variants result in a different shape of the inhibitor binding site. Mutants of the inhibitor binding pocket were generated in a 1b enzyme and evaluated for their binding affinity and sensitivity to inhibition by indole-N-acetamides. Most of the point mutants showed little variation in activity and IC50, with the exception of 15- and 7-fold increases in IC50 for Leu392Ile and Val494Ala mutants (1b→2b), respectively. Furthermore, a 1b replicon with 20-fold resistance to this class of inhibitors was selected and shown to contain the Leu392Ile mutation. Chimeric enzymes, where the 2b fingertip Λ1 loop, pocket or both replaced the corresponding regions of the 1b enzyme, were also generated. The fingertip chimera retained 1b-like inhibitor binding affinity, whereas the other two chimeric constructs and the 2b enzyme displayed between 50- and 100-fold reduction in binding affinity. Together, these data suggest that differences in the amino acid composition and shape of the indole-N-acetamide binding pocket are responsible for the resistance of the 2b polymerase to this class of inhibitors.  相似文献   

13.
NS3/4A是丙型肝炎病毒(hepatitis C virus,HCV)编码的丝氨酸蛋白酶复合体,是病毒完成自身复制周期的必要成分。该研究为调查NS3/4A对细胞凋亡及DNA损伤应答(DNA-damage response,DDR)的影响,在Huh7细胞中表达了外来NS3/4A基因。通过DAPI染色和MTT分析显示,外来表达NS3/4A显著诱导细胞的凋亡和增殖活力的下降。免疫荧光检测结果表明,NS3/4A可明显增加细胞内源性DNA双链断裂(double strand breaks,DSBs)损伤(γH2AX灶点升高);而进一步用X-ray诱导细胞外源性DSBs损伤后,外来表达NS3/4A的细胞显示出明显的DSBs损伤修复缺陷(减缓的γH2AX灶点消退)。免疫印迹法检测结果显示,NS3/4A可抑制喜树碱(Camptothecin,CPT)诱导的ATM第1 981位丝氨酸的磷酸化(pATM1 981)。以上结果提示,NS3/4A基因外来表达可引起细胞DNA损伤,抑制ATM介导的DSBs损伤修复信号,诱导细胞凋亡通路的活化。  相似文献   

14.
A novel series of 6-(indol-2-yl)pyridine-3-sulfonamides was prepared and evaluated for their ability to inhibit HCV RNA replication in the HCV replicon cell culture assay. Preliminary optimization of this series furnished compounds with low nanomolar potency against the HCV genotype 1b replicon. Among these, compound 8c has identified as a potent HCV replicon inhibitor (EC50 = 4 nM) with a selectivity index with respect to cellular GAPDH of more than 2500. Further, compound 8c had a good pharmacokinetic profile in rats with an IV half-life of 6 h and oral bioavailability (F) of 62%. Selection of HCV replicon resistance identified an amino acid substitution in HCV NS4B that confers resistance to these compounds. These compounds hold promise as a new chemotype with anti-HCV activity mediated through an underexploited viral target.  相似文献   

15.
The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.  相似文献   

16.
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
Hepatitis C virus (HCV) nucleoside inhibitors have been a key focus of nearly 2 decades of HCV drug research due to a high barrier to drug resistance and pan-genotypic activity profile provided by molecules in this drug class. Our investigations focused on several potent 2′-halogenated uridine-based HCV polymerase inhibitors, resulting in the discovery of novel 2′-deoxy-2′-dihalo-uridine analogs that are potent inhibitors in replicon assays for all genotypes. Further studies to improve in vivo performance of these nucleoside inhibitors identified aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrugs 18a and 18c, which provide high levels of the active triphosphate in dog liver. AIBEE prodrug 18c was compared with sofosbuvir (1) by co-dosing both compounds by oral administration in dog (5 mg/kg each) and measuring liver concentrations of the active triphosphate metabolite at both 4 and 24 h post dosing. In this study, 18c provided liver triphosphate concentrations that were 6-fold higher than sofosbuvir (1) at both biopsy time points, suggesting that 18c could be a highly effective agent for treating HCV infected patients in the clinic.  相似文献   

17.
Hepatitis C virus (HCV) infection is highly persistent and presents an unmet medical need requiring more effective treatment options. This has spurred intensive efforts to discover novel anti-HCV agents. The RNA-dependent RNA polymerase (RdRp), NS5B of HCV, constitutes a selective target for drug discovery due to its absence in human cells; also, it is the centerpiece for viral replication. Here, we synthesized novel pyrrole, pyrrolo[2,3-d]pyrimidine and pyrrolo[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives. The non-toxic doses of these compounds on Huh 7.5 cell line were determined and their antiviral activity against HCVcc genotype 4a was examined. Compounds 7j, 7f, 5c, 12i and 12f showed significant anti HCV activity. The percent of reduction for the non-toxic doses of 7j, 7f, 5c, 12i and 12f were 90%, 76.7 ± 5.8%, 73.3 ± 5.8%, 70% and 63.3 ± 5.8%, respectively. The activity of these compounds was interpreted by molecular docking against HCV NS5B polymerase enzyme.  相似文献   

18.
Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.  相似文献   

19.
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range.  相似文献   

20.
4-hydroxypanduratin A is a secondary metabolite of Boesenbergia pandurata Schult. (Fingerroot) plant with various pharmacological activities such as neuroprotective, potent antioxidant, antibacterial and antifungal. Flaviviral NS2B/NS3 protease activity is essential for polyprotein processing and viral replication for Japanese Encephalitis Virus (JEV), a major cause of Acute Encephaltis in Asia. Inhibition of formation of this complex by arresting the binding of NS2B with NS3 would reduce the enzyme''s activity to meager proportions and hence would prevent further viral proliferation. The automated 3D structure of NS2B protein of the JEV GP78 was predicted based on the sequence-to-structure-to-function paradigm using I-TASSER and the function of NS2B protein was inferred by matching to other known proteins. The stereochemical quality of predicted structure was checked by PROCHECK. The antiviral activity of 4-hydroxypanduratin A against NS2B protein as a potential drug has been elucidated in this paper. Docking simulation analysis showed 4-hydroxypanduratin A as potential inhibitor of NS2B protein/cofactor which is necessary for NS3 protease activity. 220 derivatives of 4-hydroxypanduratin A were virtually screened with rigid criteria of Lipinski''s rule of 5 using Autodock4.2. 4-hydroxypanduratin A was found interacting with target hydrophilic domain in NS2B protein by two Hbonds (Gly80 and Asp81) with active residues, several hydrophobic interactions, Log P value of 5.6, inhibition constant (Ki) of 51.07nM and lowest binding energy of -9.95Kcal/Mol. Hence, 4-hydroxypanduratin A targeted to Site 2 will have sufficient profound effect to inhibit protease activity to abrogate viral replication. It could be a promising potential drug candidate for JEV infections using NS2B Site 2 as a Drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号