首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callus of Orthosiphon stamineus could be induced successfully from petiole, leaf and stem tissues but not roots when cultured on MS medium containing different concentration of NAA (0–4.0 mg l–1) and 2,4-D (0–2.0 mg l–1). Highest fresh weight callus production was obtained from leaf explants and those with best friability were obtained on MS medium plus 1.0 mg l–1 2,4-D plus 1.0 mg l–1 NAA. Cell suspension cultures were established from these cultures. The appropriate cell inoculum size for the best cell growth was 0.75 g of cells in 20 ml culture medium. Cell suspension culture using MS medium supplemented with 1.0 mg l–1 2,4-D promoted the best cell growth with maximum biomass of 8.609 g fresh weight and 0.309 g dry weight 24 days after inoculation. Cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D reached the stationary growth phase in 15 days as compared to the cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D + 1.0 mg l–1 NAA reached the stationary phase in 24 days. MS medium supplemented with 1.0 mg l–1 2,4-D was considered as the maintenance medium for maintaining the optimum cell growth of O. stamineus in the cell suspension cultures with 2-week interval subculture.  相似文献   

2.
Myxobacter AL-1 was synchronized by size fractionation of asynchronous cultures on a 5–20% equivolumetric sucrose gradient in a Ti—15 zonal rotor. The degree of synchronization obtained by this method was determined 1. by a comparison of the size distribution of an asynchronous culture to the distribution of cell numbers in the fractions of the zonal run, 2. by studying the size distributions in the different fractions obtained with the zonal rotor and 3. by following the growth and size distribution of a fraction from a zonal run during one division cycle. The results indicate that this method is suitable for the study of the cell cycle of Myxobacter AL-1.  相似文献   

3.
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014–0.076 h-1) and extracellular pH (6.11–6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentrationto response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07–0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04–0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11–0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determined that maintenance coefficient (0.04–0.06 g cellulose/g cells · h) and true growth yield (0.23–0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower max on microcrystalline cellulose.  相似文献   

4.
Affordable biological technology for the reclamation of wastes and water of the waste streams from intensive livestock units is important in a country short of water. This study tested the concept of reclamation of waste by Streptocephalus macrourus (Crustacea: Anostraca) from the effluent of a high rate algal pond processing livestock wastes. S. macrourus showed a growth efficiency of 39% to 74% when fed optimal rations and cultured at densities between 10 and 400 1–1. The maximum daily growth rates (0.15–0.21) approximate the growth rates of cladoceran or rotifer cultures managed for maximal biomass production. S. macrourus' ability to withstand crowding enabled the production from S. macrourus cultures (up to 91.8 mg dry mass l–1 d–1, or 1241 mg wet mass l–1 d–1) to exceed production recorded from cladoceran or rotifer cultures. Temperature influenced growth rate, with the highest growth rate occurring at 24 °C. The dilution rate of continuously fed cultures influenced growth rate, with the optimum dilution rate tested being 10 ml organism –1 d–1. Mass mortality occurred when organisms were held at a density of 4000 l–1. S. macrourus is able to convert algae grown on livestock waste efficiently into anostracan biomass, and is able to give a very high daily production.  相似文献   

5.
Solanum chrysotrichum (Solanaceae) synthesizes a family of six antifungal spirostanol saponins designated as SC-1 to SC-6. The production of saponins by wild-type plants is variable depending on the environmental conditions. In order to develop an in vitro system for the sustained production of these saponins, transformed cell suspension cultures of S. chrysotrichum were established from nodal explants of 3-mo-old plantlets by infecting with the Agrobacterium tumefaciens strain C58/pBI12. From these cultures, kanamycin-resistant and phytohormone-independent cell suspension line C58 5.1.1 was obtained. PCR and Southern blot analyses were used to confirm the integration of the wild-type T-DNA into the plant genome. Batch cultures of the C58 5.1.1 cell line were grown in phytohormone-free MS liquid medium for 25 d. First-order growth kinetics and the production of the antifungal saponins (SC-2, SC-3, and SC-4) were determined by dry weight and quantified by HPLC, respectively, from the cells as well as the culture medium. Based on the cell biomass, the specific growth rate was 0.09 d−1 and the yield of SC-2 reached 5.5% of dry weight, representing 40 times higher amount than that produced in plant leaves. SC-3 was recovered with a maximum yield of 0.9% of dry weight, whereas SC-4 was accumulated at 1.1% of dry weight. Saponins SC-2 and SC-3 were also excreted into the culture medium in low concentrations.  相似文献   

6.
Excised root cultures of Gloriosa superba reached 7.5 g dry wt l–1 and accumulated 240±40 g colchicine g–1 cell dry wt after 4 weeks growth. While all precursors (except trans-cinnamic acid) enhanced colchicine content of root cultures without adversely affecting root growth, treatment with p-coumaric acid + tyramine (each at 20 mg l–1) increased colchicine content to 1.9 mg g–1 cell dry wt.  相似文献   

7.
This report describes the technique used to induce the hairy roots in Physalis minima (Linn.). Different types of explants obtained from in vitro germinated seedlings were aseptically co-cultivated with A. rhizogenesstrain LBA9402 in different media. Root growth and production of physalins were investigated in various basal media grown under dark and light conditions, and compared to that of normal root cultures. Transformed hairy root cultures grew rapidly and reach stationary phase after 15 days on a B5 medium. HPLC analysis of extracts of hairy root cultures showed that the maximum content of physalin B and F was 1.82 and 4.15 mg g–1 DW, respectively, when grown under dark conditions. Normal root cultures produced higher physalin B (1.60–1.62 mg g–1 DW) and F (3.30–3.75 mg g–1 DW) under the same culture conditions. Physalin F synthesis in light-grown root cultures was reduced significantly.  相似文献   

8.
Gloeotrichia natans, a nitrogen fixing cyanobacterium common in rice fields in the Philippines, was used for studies to establish key features of its physiology and potential production in outdoor cultures. Under optimal growth conditions (38 °C, pH 8.0, no carbon enrichment) the specific growth rate of rice-field isolate was 0.076 h–1. The pH of the medium (between 6.5 and 9.0) did not influence the growth rate, but it did affect phycobiliprotein content, as reflected by a change in colour. At pH 7.0 the culture was green-brown, with phycobiliproteins constituting up to 10% of the total protein, while at pH 9.0 the culture was brownish-black and the pigment content was as high as 28% of the total protein. In outdoor cultures the specific growth rate was related directly to cell density in the range of 0.7–1.5 g dry weight 1–1 at a rate of stirring of 30 rpm, and inversely related to cell density at half this rate. At a stirring of 30 rpm, daily production of outdoor cultures harvested to maintain cell densities of 0.7, 1.15 andw 1.5 g 1–1 were 14.7, 17.1 and 18.1 g m–2 dt, respectively. This rate of production was maintained for more than 45 days. Phycobiliprotein content in the culture kept at a density of 1.5 g 1–1 reached 14% of the total biomass.  相似文献   

9.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

10.
Synechocystis sp. PCC 6803 was grown in a 2.5 l enclosed photobioreactor on medium with or without glucose. The incident light intensities ranged from 1.5 klux to 7 klux. The highest average specific growth rates of mixotrophic culture and photoautotrophic culture were, respectively, 1.3 h–1 at a light intensity of 7 klux on 3.2 g l–1 glucose and 0.3 h–1 at both light intensities of 5 klux and 7 klux. The highest cell density 2.5 g l –1 was obtained at both of light intensities 5 klux and 7 klux on 3.2 g glucose l–1. Glucose consumption decreased with decreasing light intensity. The energy yields of mixotrophic cultures were 4 to 6 times higher than that of photoautotrophic cultures. Light favored mixotrophic growth of Synechocystis sp. PCC 6803, especially at higher light intensities (5–7 klux).  相似文献   

11.
The fatty acid composition of the alga Chlorella saccharophila was investigated under different growth conditions. Using glucose as the sole carbon source, heterotrophically-grown Chlorella saccharophila produced a greater proportion of the polyunsaturated fatty acids (C18: 2 and C18: 3) than photosynthetic cultures, with linoleic acid (C18: 2) predominating. An unexpected discovery was the observation that at the lowest glucose concentration (2.5 gl–1) the lipid content of the algae increased to between 36–47% of the cell weight, depending on the temperature. At glucose concentrations of 5 g l–1 or more, the lipid content fell to 10–12% of the cell, although total fatty acid yield was higher due to higher biomass concentrations. Aeration of heterotrophic cultures promoted the production of unsaturated fatty acids compared to non-aerated cultures.  相似文献   

12.
The metabolism of monoaromatic hydrocarbons by an iron-reducing bacterial enrichment culture originating from diesel-contaminated groundwater was examined using d7-propylbenzene as a model hydrocarbon. Sequence analysis of the 16S rDNA gene showed that the dominant part (10 of 10 clones) of the enrichment culture consisted of a bacterium closely related to clones found in benzene-contaminated groundwater and to the iron-reducing -proteobacterium, Rhodoferax ferrireducens (similarity values were 99.5% and 98.3%, respectively). In degradation studies conducted over 18 weeks, d7-propylphenols were detected by gas chromatography–mass spectrometry (GC/MS) as intra-cellular metabolites concomitant with cell growth in the cultures. The amount of propylphenols increased during the exponential growth phase, and by the end of this phase 4 × 10–14 moles of ferric iron were reduced and 3 × 10–15 moles propylphenol produced for every cell formed. During the stationary growth phase the cell density was approximately 107 ml–1, with significantly correlated amounts of propylphenols. Succinate derivates of propylbenzene or phenylpropanol previously shown to be the initial metabolites in the anaerobic degradation of alkylbenzenes could not be identified. This study is the first to report that oxidation of propylbenzene to propylphenols can initiate anaerobic propylbenzene degradation and that iron-reducing bacteria are responsible for this process. In addition, the study shows the importance of taking account of the metabolites adhering to solid phases when determining the extent of biodegradation, so as not to underestimate the extent of the process.  相似文献   

13.
The sedative triterpene, galphimine B (1), was detected in cell suspension-batch cultures of Galphimia glauca. The effect of inoculum size, growth regulators and different concentrations of sucrose, nitrates and phosphates was evaluated. A two-stage batch process for biomass production and accumulation of compound 1 was established. Major cellular growth (15 g l–1 dry wt) was obtained in the first stage with naphthaleneacetic acid (2 mg l–1) + kinetin (2 mg l–1). Adding 4 mg 2,4-dichlorophenoxyacetic l–1 acid in the second stage resulted in the highest accumulation of 1 (0.21 mg g–1 dry wt) which was 36% higher with respect to calluses and comparable to that obtained from wild plants.  相似文献   

14.
Protocols were established for achieving plant regeneration from stem internode, callus, and cell suspension cultures of Solanum lycopersicoides Dun. Two accessions of S. lycopersicoides exhibited different responses as to callus formation on various media, requirement of gibberellic acid for shoot regeneration, and ability to grow in suspension culture. The optimum medium for initiation and maintenance of cell suspension cultures was Murashige and Skoog [9] medium with 15 mg l NAA. For shoot regeneration, of three cytokinins tested, zeatin was found most effective relative to number, rapidity of response and overall quality of shoots. Shoot regeneration from stem explants, callus and suspension cultures was optimum on MS + 3.0 mg l–1 zeatin + 0.1 mg l–1 gibberellic acid.Michigan Agricultural Experiment Station Journal Article No. 11589.  相似文献   

15.
When Euglena gracilis was grown in the heterotrophic condition with glucose and (NH4)2SO4 as the carbon and nitrogen source, a high cell yield (4.28–4.48 g l–1) was obtained and the culture pH decreased to 1.6–2. The biomass production in the heterotrophic culture was compared to those in the autotrophic and mixotrophic cultures. Autotrophic growth was 4.7–6.3% of the heterotrophic one, whereas about 15–19% higher growth was obtained in the mixotrophic culture. Moreover, good production of chlorophyll (39.4 mg l–1) and carotenoids (13.8 mg l–1) were attained in the mixotrophic culture, giving the highest fermenter productivity with respect to biomass as well as chlorophyll and carotenoids. Through an energetic analysis in the mixotrophic culture, it was estimated about 25–28% of the total ATP requirement is formed in the photochemical reactions. This resulted in an improved biomass production in the mixotrophic culture of E. gracilis.  相似文献   

16.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

17.
The effects of concentration of amino acids, nitrate, and ammonium on the growth and taxol production in cultures of cell line TY-21 of Taxus yunnanensis were investigated. Addition of 20 different amino acids each at 15–20 mg l–1 to B5 medium significantly improved callus growth but inhibited taxol formation in the cultures. The optimum nitrate concentration was 20–30 mM for both growth and taxol production. Ammonium greatly suppressed growth but strongly promoted taxol formation in the cells when it was the sole inorganic nitrogen in the medium. Culturing the suspension cells in nitrate-containing medium for 15 days and then in a medium in which ammonium was the sole inorganic nitrogen for 7 days increased taxol yield by 104%, reaching up to 28.1 mg l–1.  相似文献   

18.
Transformed root cultures of Coluria geoides Ledeb. were established with the use of Agrobacterium rhizogenes LBA 9402. Both normal and transformed root cultures were investigated for their growth and yield of eugenol. Normal roots were grown in B5 medium-supplemented with 0.2 mg l-1 of kinetin and 0.2 mg l-1 of 1-naphthaleneacetic acid (NAA). Hairy roots grew well in hormone-free B5 medium. Both hairy roots and normal roots produced glycosidic bound eugenol. as with the roots of intact plants, eugenol was the main component of the total essential oils obtained from hairy root and normal root cultures. The yield of eugenol from normal roots was 0.1–0.25% of the dry wt. and depended on the development stage of the culture. Yield of eugenol from hairy roots was 0.08–0.1% of the dry wt. NAA modified the hairy root morphology and influenced the yield of eugenol.Abbreviations NAA 1-naphthaleneacetic acid  相似文献   

19.
We examined whether auxins and cytokinins, either singly or in combination, stimulate cell division in tissue cultures of a red seaweed. Our experimental model consisted of filamentous and callus-like growths that developed from cross-sectional discs cut from young branches of Agardhiella subulata. Plant growth regulators were added to the medium to give combinations of an auxin with a cytokinin over a range of concentrations (1 µg L–1 –10 mg L–1). Several mixtures of auxins and cytokinins, as well as some single auxins, cytokinins and phenolics, stimulated cell division and growth in the tissue cultures beyond that of controls. The treatments that were effective included: phenylacetic acid/zeatin; phenylacetic acid/6-benzylaminopurine; -naphthaleneacetic acid/zeatin; 2,4,5-trichlorophenoxyacetic acid/6-benzylaminopurine; and indoleacetic acid/kinetin. High concentrations of cytokinins (i.e. 10 mg L–1) inhibited the regeneration of plants in some of the cell cultures. These results provide further evidence that growth regulators can be used for the tissue culture of seaweeds and for the study of developmental phenomena in these plants.  相似文献   

20.
Summary An endo-pectate lyase (PL; EC 4.2.2.2), originally cloned fiom the phytopathogenic bacterium Erwinia chrysanthemi EC16, was expressed in recA E. coli strain DK1, purified to a single band by isoelectric focusing and used to induce berberine production in established plant suspension cultures of Thalictrum minus L. subsp. saxatile. Addition of 10–9M pectate lyase c (PLc) stimulated berberine production and enhanced secretion of the alkaloid into the medium. A lower concentration of PLc, 10–11M, stimulated a transient two-fold increase in cell growth rate relative to untreated cultures. Parallel changes in L-phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity with the rate of berberine synthesis and the inverse relationship between cell growth and berberine synthesis imply that berberine synthesis is stress-related in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号