首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gilroy S  Jones RL 《Plant physiology》1994,104(4):1185-1192
The response of protoplasts isolated from aleurone layers of barley (Hordeum vulgare L. cv Himalaya) to internally and externally applied hormone was analyzed to localize the site of perception of the hormonal signal. Protoplasts responded to externally applied gibberellic acid (GA3) with increased synthesis and secretion of [alpha]-amylase, transient expression of the glucuronidase reporter gene fused to the hormone-responsive elements of the [alpha]-amylase promoter, and the vacuolation typical of GA3-treated aleurone cells. When up to 250 [mu]M GA3 was microinjected into the protoplast cytoplasm, none of these responses were observed. This did not reflect damage to the protoplasts during the microinjection procedure, since microinjected protoplasts remained responsive to externally applied hormone. Nor did it reflect loss of microinjected GA3 from the protoplast, since 50% of microinjected [3H]GA20 was retained by protoplasts for at least 24 h. Externally applied abscisic acid (ABA) could reverse the stimulation of [alpha]-amylase synthesis and secretion, whereas microinjecting up to 250 [mu]M ABA was ineffective at antagonizing the stimulatory effect of GA3. These results suggest that the site of perception of GA3 and ABA in the barley aleurone protoplast is on the external face of the plasma membrane.  相似文献   

2.
3.
4.
Modulation of Calmodulin mRNA and Protein Levels in Barley Aleurone   总被引:11,自引:0,他引:11       下载免费PDF全文
Changes in calmodulin (CaM) mRNA and protein were investigated in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) incubated in the presence and absence of calcium, gibberellic acid (GA3), and abscisic acid (ABA). CaM mRNA levels increased rapidly and transiently following incubation of aleurone layers in H2O, CaCl2, or GA3. The increase in CaM mRNA was prevented by ABA. This increase in CaM mRNA was brought about by physical stimulation during removal of the starchy endosperm from the aleurone layer. CaM protein levels did not increase in response to physical stimulation. Only incubation in GA3 plus CaCl2 brought about a rapid increase in CaM protein levels in the aleurone cell. ABA reduced the level of CaM protein below that found at the beginning of the incubation period. The rise in CaM protein preceded increases in the synthesis and secretion of [alpha]-amylase. Immunocytochemistry with monoclonal antibodies to carrot and mung bean CaM was used to localize CaM in aleurone protoplasts. Monoclonal antibodies to tubulin and polyclonal antibodies to tonoplast intrinsic protein and malate synthase were used as controls. CaM was localized to the nucleus, the vacuolar membrane, and the cytosol, but was not associated with microtubules.  相似文献   

5.
Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue.  相似文献   

6.
It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of α-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of α-amylase activity reveal that GA-induced α-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing α-amylase secretion or inhibiting α-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI α-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of α-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination. Zhen Xie and Zhong-Lin Zhang contributed equally to this work.  相似文献   

7.
8.
Skadsen RW 《Plant physiology》1993,102(1):195-203
The physiological and molecular bases for contrasting [alpha]-amylase phenotypes were examined in germinating seeds of two barley (Hordeum vulgare L.) cultivars, Morex and Steptoe. Morex is a high-quality malting barley that develops high [alpha]-amylase activity soon after germination. Steptoe is a feed barley that develops only low [alpha]-amylase activity levels during this period. The expression of all high- and low-isoelectric point (pl) [alpha]-amylase isozymes is reduced in Steptoe. The amount of [alpha]-amylase mRNA per gram of seedling tissue is correspondingly lower in Steptoe. Southern blot analysis revealed that the cultivars have the same copy number and organization for most high- and low-pl genes. Steptoe seedlings or embryoless half-seeds produce little [alpha]-amylase in response to exogenous applications of gibberellic acid (GA3) compared with Morex. However, when isolated aleurones of both cultivars are treated with GA3, they produce similar amounts of high- and low-pl [alpha]-amylase RNAs. This suggests that a factor in the starchy endosperm is responsible for lowered [alpha]-amylase response in Steptoe. The factor is probably not abscisic acid (ABA), since the two cultivars have similar concentrations of ABA during germination.  相似文献   

9.
10.
To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels.  相似文献   

11.
12.
13.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

14.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

15.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   

16.
17.
18.
Slender barley: A constitutive gibberellin-response mutant   总被引:13,自引:0,他引:13  
In barley (Hordeum vulgare L. cv. Herta), slender (sln1) is a single-locus recessive mutation which causes a plant to appear as if it had been grown in sturating concentrations of gibberellin (GA). We have investigated two of the GA-mediated processes in slender barley, shoot elongation and the induction of hydrolytic enzymes in aleurone layers. Shoot elongation is severely retarded in normal (wild-type) barley if the biosynthesis of GA is blocked by an inhibitor, ancymidol (-cyclopropyl--(p-methoxyphenyl)-5-pyrimidinemethanol). However, the slender mutant continues to elongate in the presence of ancymidol. In isolated normal aleurone layers, the synthesis and secretion of -amylase (EC 3.2.1.1), protease (EC 3.4) and nuclease (EC 3.1.30.2) are induced by exogenously applied GA3. However, in the aleurone layers of the slender mutant these enzymes are produced even in the absence of GA but their synthesis is still susceptible to inhibition by abscisic acid. Bioassays of half-seeds of the slender mutant and their normal siblings show no detectable differences in endogenous levels of GA-like substances. We suggest that the slender mutation allows competent tissues to express fully, or over-express, appropriate GA-induced processes independent of GA. We also conclude that shoot elongation, and hydrolytic-enzyme secretion in aleurone layers, share a common regulatory element.Abbreviations ABA abscisic acid - GA gibberellin - GA3 gibberellic acid  相似文献   

19.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

20.
Increasing evidence shows that sugars can act as signals affecting plant metabolism and development. Some of the effects of sugars on plant growth and development suggest an interaction of sugar signals with hormonal regulation. We investigated the effects of sugars on the induction of [alpha]-amylase by gibberellic acid in barley embryos and aleurone layers. Our results show that sugar and hormonal signaling interact in the regulation of gibberellic acid-induced gene expression in barley grains. The induction of [alpha]-amylase by gibberellic acid in the aleurone layer is unaffected by the presence of sugars, but repression by carbohydrates is effective in the embryo. [alpha]-Amylase expression in the embryo is localized to the scutellar epithelium and is hormone and sugar modulated. The effects of glucose are independent from the effects of sugars on gibberellin biosynthesis. They are not due to an osmotic effect, they are independent of abscisic acid, and only hexokinase-phosphorylatable glucose analogs are able to trigger gene repression. Overall, the results suggest the existence of an interaction between the hormonal and metabolic regulation of [alpha]-amylase genes in barley grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号