首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
在韩国己记述的斑蛾科昆虫有17种,这些斑蛾的幼虫主要食叶或卷叶,多数为害果树和林木等。幼虫身体短粗,头缩于前胸内,体上常有毛瘤或毛簇,腹足趾钩为单序中带。本文详细地记述了韩国斑蛾科Illiberis tenuis(Butler),Chalcosia remota(Walker)和Pryeria sinica Moore老熟幼虫的形态特征,并提供了形态特征图。  相似文献   

2.
Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae. The results showed that up to 4 days after inoculation, no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day. After 5 days of infection, the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection, whereas that of the control group was only 10% and 20%, respectively, after same periods of infection, suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV. The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments. The total length of the native DsDNA was about 5.95 kb. The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites. Comparison of the restriction map of the DsDNV genome with those of the genomes ofJunonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites. Thus, most of the restriction sites of the following endonucleases Bam H I, Hha I, Xba I, Cla I, Asp 700, Spe I, Nco I and Bcl I, were found to be conserved among the three densovirus genomes. Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp. The similar genome size, almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.  相似文献   

3.
Synergistic actions for mixtures of abamectin with other insecticides in some insect pests were evaluated, and the possible synergistic mechanism was studied by the comparison in toxicity and cuticular penetration of abamectin between with and without other insecticides or synergists in Helicoverpa armigera larvae. The results of bioassay showed that horticultural mineral oil (HMO), hexaflumuron, chlorpyrifos, and some other insecticides were synergistic to abamectin with 152.0-420.0 of co-toxicity coefficient(CTC) in some agricultural insect pests. In topical application tests, HMO or piperonyl butoxide (PBO) increased the toxicity of abamectin in larvae of H. armigera, but the mortality was not affected by s,s,s-tributylphorotrithioate (DEF) and triphenylphosphate (TPP). The synergistic action of HMO was obviously higher than PBO, and when treated simultaneously with abamectin, HMO gave a more significant synergism than if treated 2 hours ahead. The highest synergistic effect (SE) was found in the mixture of ‘abamectin HMO (1:206)‘. The mortality did not increase or the toxicity drop, when a synergist or HMO was added into the mixture of ‘abamectin HMO‘ or ‘abamectin synergist‘, respectively. Results from the isotope tracing experiments showed that HMO significantly enhanced the penetration of ^3H-abamectin through the cuticle of H.armigera larvae, which resulted in the synergism of the mixture. The cuticular penetration of ^3H-abamectin was not accumulatively affected by chlorpyrifos, nor by hexaflumuron,though there was an inhibition within 30 seconds or 1 hour after treated by these two chemicals respectively. Results suggested that the synergism of abamectin mixed with hexaflumuron or chlorpyrifos might be related to inhibition of metabolic enzymes or target sites in the larvae.  相似文献   

4.
Herbicides and insecticides are widely used in modern agriculture. It has been reported in various studies that application of insecticides can increase tolerance of herbivorous insects to insecticides. However, limited information exists on susceptibility to insecticides when insects are exposed to herbicides. This study was conducted to investigate the potential impact of the herbicides trifluralin and 2-methyl-4-chlorophenoxyacetic acid sodium salt (MCPA-Na) on the susceptibility of the nocturnal moth Spodoptera litura to the insecticides X-cyhalothrin, phoxim and bifenthrin. We found that larvae exposed to trifluralin or MCPA-Na became significantly less susceptible to both insecticides than nonexposed control larvae. Herbicide-treated larvae did not show altered growth under the used test conditions. However, heads of herbicide-treated larvae showed increased expression of the acetylcholinesterase genes SI Ace I and SI Ace 2. Moreover, the fat body and midgut of herbicide-treated larvae displayed elevated expression of detoxification genes (the carboxylesterase gene SI CarE;the glutathione S-transferase genes SlGSTe2 and SlGSTe3\ the cytochrome P450 monooxygenase genes CYP6B48, CYP9A40 and CYP321B1). The CYP6B48 gene exhibited highest inducibility. In conclusion, the data of this study suggest that exposure of S. litura larvae to herbicides may stimulate detoxification mechanisms that compromise the efficacy of insecticides.  相似文献   

5.
高艳美  吴鹏飞 《生态学报》2016,36(8):2327-2336
土壤昆虫是陆地生态系统的重要组成部分,在物质循环和能量转化过程中起着重要的作用。为了查明高寒草甸生态系统退化对土壤昆虫群落的影响,于2011年的4、5、7和10月份别对青藏东缘的若尔盖高寒草甸的沼泽草甸、草原草甸、中度退化草甸和重度退化草甸的土壤昆虫群落进行了调查。共捕获土壤昆虫4172只,隶属于8目35科,共46类。优势类群有尖眼蕈蚊科幼虫(Sciaridae larvae)、摇蚊科幼虫(Chironomidae larvae)和象甲科幼虫(Curculionidae larvae),其中尖眼蕈蚊科幼虫为各退化阶段的共同优势类群。重度退化草甸的土壤昆虫密度和多样性指数均显著低于其它退化阶段(P0.01)。各退化阶段间的Sorenson相似性和Morisita-Horn相似性指数变化趋势表明退化对土壤昆虫的类群组和优势类群的个体数量影响较大。而土壤昆虫的群落密度和多样性指数的季节动态在不同退化阶段间也存在差异。此外,高寒草甸的退化还可影响昆虫群落优势类群的时空分布,但不同类群间存在差异。相关分析结果表明土壤昆虫多样性与土壤p H值呈显著负相关(P0.01),与地下生物量和磷含量呈显著正相关(P0.01),而密度仅与p H值呈显著负相关(P0.01)。研究结果表明高寒草甸退化可通过改变植物群落及土壤等环境因子影响土壤昆虫群落组成和多样性的空间分布和季节动态。  相似文献   

6.
7.
Insects possess specific immune responses to protect themselves from different types of pathogens.Activation of immune cascades can inflict significant developmental costs on the surviving host.To characterize infection kinetics in a surviving host that experiences baculovirus inoculation,it is crucial to determine the timing of immune responses.Here,we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses,Autographa californica multiple nucleopolyhedrovirus(AcMNPV)and Helicoverpa zea single nucleopolyhedrovirus(HzSNPV),in their common host H.zea.As H.zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV,we hypothesized there are differential immune responses and fitness costs associated with resisting infection by each virus species.Newly molted 4th-instar larvae that were inoculated with a low dose(LD15)of either virus showed signify icantly higher hemolymph FAD-glucose dehydrogenase(GLD)activities compared to the corresponding control larvae.Hemolymph phenoloxidase(PO)activity,protein concentration and total hemocyte numbers were not increased,but instead were lower than in control larvae at some time points post-inoculation.Larvae that survived either virus inoculation exhibited reduced pupal weight;survivors inoculated with AcMNPV grew slower than the control larvae,while survivors of HzSNPV pupated earlier than control larvae.Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.  相似文献   

8.
The present study examined intraspecific interference and searching behavior of Chrysopa phyllochroma Wesmael (Neuroptera: Chrysopidae) for Aphis gossypii Glover (Homoptera: Aphididae) nymphs under laboratory and greenhouse conditions. The results were shown as follow: 1) In four different arenas (i.e. Petri dish, glass vessel, glass vessel with barriers in it, and cage with potted cotton plant), the predaceous efficiency of C. phyllochroma larvae varied with the predator density, the hunt constant (Q) and the intraspecific interference (m)increased with the prey density but decreased with the space heterogeneity; 2) In cage with potted cotton plant, the first- and second-instar green lacewing larvae consumed 13.6 and 29.4 cotton aphids/day respectively. The number of cotton aphids consumed by C. phyllochroma on lower leaves was significantly less than that on upper leaves; and 3) In cage with potted cotton plant, the percentage of the first- and second-instar green lacewing larvae located on upper leaves was significant less than that on lower leaves.  相似文献   

9.
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNASeq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.  相似文献   

10.
王平远 《昆虫学报》1985,(4):417-418
笔者整理云南省森林昆虫调查采到的斑蛾科标本,发现锦斑蛾属(Chalcosia)有一个新种。这种斑蛾的后翅外缘披蓝色,取名蓝缘锦斑蛾Chalcosia azurmarginata,新种。模式标本保存在中国科学院动物研究所标本馆。 蓝缘锦斑蛾Chalcosia azurmarginata新种(图1) 触角深蓝色细栉齿状;额暗绿色。头顶朱红,头部和颈片朱红色。下唇须白色。胸部  相似文献   

11.
American foulbrood (AFB) disease is caused by Paenibacillus larvae. Currently, this pathogen is widespread in the European honey bee— Apis mellifera. However, little is known about infectivity and pathogenicity of P. lan'ae in the Asiatic cavity-nesting honey bees, Apis cerana. Moreover, comparative knowledge of P. larvae infectivity and pathogenicity between both honey bee species is scarce. In this study, we examined susceptibility, larval mortality, survival rate and expression of genes encoding antimicrobial peptides (AMPs) including defensin, apidaecin, abaecin, and hymenoptaecin in A. mellifera and A. cerana when infected with P. larvae. Our results showed similar effects of P. larvae on the survival rate and patterns of AMP gene expression in both honey bee species when bee larvae are infected with spores at the median lethal concentration (LC5 0 ) for A. mellifera. All AMPs of infected bee larvae showed significant upregulation compared with noninfected bee larvae in both honey bee species. However, larvae of A. cerana were more susceptible than A. mellifera when the same larval ages and spore concentration of P. larvae were used. It also appears that A. cerana showed higher levels of AMP expression than A. mellifera. This research provides the first evidence of survival rate, LC50 and immune response profiles of Asian honey bees, A. cerana, when infected by P. larvae in comparison with the European honey bee, A. mellifera.  相似文献   

12.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

13.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

14.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

15.
黄其林 《昆虫学报》1956,(3):371-372
最近作者在进行斑蛾科幼虫外形比较研究时,曾在185个大叶黄杨斑蛾幼虫中发现有一个幼虫具有畸形构造的上颚。下面把它和正常的上颚加以比较和叙述。 正常上颚的基部具有一个关节突(图1,Cd1)和一个关节臼Col。由这种关节突和头部腹面的关节盂构成杵臼关节。关节臼和头部的突起也构成同样的关系,上颚的尖端具有3个齿状构造。整个上颚的中面低凹,并有隆起脊3条(图1,A)。上颚的侧面拱曲,具有刚毛两根(图1,B)。  相似文献   

16.
Interactions between plants and insects are among the most important life functions for all organism at a particular natural community.Usually a large number of samples are required to identify insect diets in food web studies.Previously,Sanger sequencing and next generation sequencing(NGS)with short DNA barcodes were used,resulting in low species-level identification;meanwhile the costs of Sanger sequencing are expensive for metabarcoding together with more samples.Here,we present a fast and effective sequencing strategy to identify larvae of Lepidoptera and their diets at the same time without increasing the cost on Illumina platform in a single HiSeq run,with long-multiplexmetabarcoding(COI for insects,rbcL,matK,ITS and trnL for plants)obtained by Trinity assembly(SHMMT).Meanwhile,Sanger sequencing(for single individuals)and NGS(for polyphagous)were used to verify the reliability of the SHMMT approach.Furthermore,we show that SHMMT approach is fast and reliable,with most high-quality sequences of five DNA barcodes of 63 larvae individuals(54 species)recovered(full length of 100%of the COI gene and 98.3%of plant DNA barcodes)using Trinity assembly(up-sized to 1015 bp).For larvae diets identification,95%are reliable;the other 5%failed because their guts were empty.The diets identified by SHMMT approach are 100%consistent with the host plants that the larvae were feeding on during our collection.Our study demonstrates that SHMMT approach is reliable and cost-effective for insect-plants network studies.This will facilitate insect-host plant studies that generally contain a huge number of samples.  相似文献   

17.
蛀果蛾科一新属新种   总被引:1,自引:0,他引:1  
蛀果蛾科(Carposinidae)尝归在广义的谷蛾总科(Tineoidea)或卷蛾总科(Tortricoidea)下,Diakonoff(1961)则提升为蛀果蛾总科(Carposinoidea)。虽其外生殖器与麦蛾类近似,但从喙的光裸和幼虫前胸气门前具一对毛,显然与它们不同。作者则按Meyrick(1928)的意见,将蛀果蛾科列入矢蛾总科(Copromorphoidea);Turner(1947)曾将蛀果蛾作为矢蛾科(Copromorphidae)的一个亚科(Carposininae),而我们认为仍宜独列为科。此科盛产于澳大利亚、新西兰和夏威夷群岛,欧亚大陆则为数不多;Meyrick(1922)在《昆虫属志》第179辑的专著中共记有8属128种,以后增加不多。  相似文献   

18.
19.
Spatial patterns of ramet population of Iris japonica Thunb. and their effect on species diversity in the herb layer of 3 microsites (open area of forest edge (OAFE), bamboo forest (BF) and evergreen broad-leaved forest (EBF)) on Jinyun Mountain were studied using spatial pattern, niche and diversity analyses in a combination of population and community methods. The results were as follows: (1) judged by V/m and Morisita index (Iδ), ramet population of I. japonica in 3 microsites all clumped from scale 0.5 m × 0.5 m to 2 m × 2 m; (2) the pattern scale and pattern intensity both gradually decreased on all scales, and the density of ramet population of I. japonica decreased with the increase in canopy density and the decrease in relative photon flux density (RPFD) and R/FR from OAFE to EBF. In OAFE and BF, widespread I. japonica had significantly negative influence on the dominance of original dominant species and on species diversity in the herb layer (p < 0.05), while those influences in EBF were extremely weak. The mechanisms that pattern characteristics of ramet population of I. japonica influence herb diversity in 3 microsites were different. In OAFE, strong regeneration niche (above-ground spatial and below-ground root) and trophic niche (nutrient) competition had significantly negative influence on the species diversity of rare herbs and dwarf herbs. In BF, strong regeneration niche (below-ground root) and trophic niche (above-ground for light and below-ground for nutrient) competition had negative effect on the occurrence of rare species and on the survival of other herb species. In EBF, weak niche competition had little effect on the survival of herb species. Intensity of regeneration niche and trophic niche competition between I. japonica and other herb species is the determinant to the mechanism that ramet population of I. japonica influences herb diversity.  相似文献   

20.
后河国家级自然保护区蛾类昆虫的季节多样性   总被引:2,自引:0,他引:2  
后河国家级自然保护区位于湖北省与湖南省交界处,属于武陵山脉,与湖南壶瓶山国家级自然保护区相邻。该保护区自然环境优越,为昆虫繁衍提供了良好条件。为了研究后河国家级自然保护区蛾类昆虫的季节动态变化,在春、夏、秋三季,选取茅坪、湾潭和独岭为样地,采用灯光诱集方法,对后河国家自然保护区的蛾类昆虫群落多样性及季节变化进行了调查。采用α-多样性测度方法,分析了物种丰富度(S)、多样性指数(科、属及种级)(H)、均匀度指数(J)和优势度指数(D)。结果表明:后河国家自然保护区的蛾类昆虫分属21科173属227种,其中夜蛾科的丰富度最高达到62。随后是,尺蛾科和螟蛾科昆虫,它们的物种丰富度指数分别为为58和25。从各科个体数来看,尺蛾科昆虫最多有423头,灯蛾科排第二,有351头,第三的是夜蛾科昆虫有336头。蛾类昆虫的物种丰富度指数、多样性指数、均匀度指数及优势度指数随季节变化而变化。蛾类昆虫的物种丰富度指数以夏季最高,达到117;然后依次是秋季和春季。科级、属级和种级多样性指数也以夏季最高,分别为2.22、4.05和4.29。均匀度指数和优势度指数以春季最高,分为2.40和0.12。研究得出后河国家级自然保护区的生态环境好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号