首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
The Cdk1p-cyclin B complex drives entry into mitosis in all eukaryotes. Cdc13p is the single essential cyclin in Schizosaccharomyces pombe and a member of the cyclin B family. Cdc13p abundance rises during G(2)-phase and falls as cells progress through mitosis and G(1). Cdc13p degradation, mediated by the anaphase-promoting complex, is an important mechanism of Cdk1p inhibition and mitotic exit. Cdk1p-cyclin B1 complexes shuttle between the nucleus and cytoplasm, and preventing nuclear accumulation of Cdk1p-cyclin B1 in mammalian cells appears to be one mechanism of preventing entry into mitosis during a DNA damage-induced checkpoint delay. In vertebrates, phosphorylation plays a key role in regulating the intracellular distribution of cyclins. Previous mass spectrometric analysis identified sites of Cdc13p phosphorylation. Here, we have confirmed that these sites are the sole in vivo Cdc13p phosphorylation sites and have studied the role that phosphorylation plays in Cdc13p localization and function. Our data indicate that Cdc13p accumulates in the nucleolus in response to G(2) checkpoint delays, rather than in the cytoplasm, and that phosphorylation plays no role in Cdc13p localization or function.  相似文献   

2.
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.  相似文献   

3.
The mitotic inducer Cdc25 phosphatase controls the activation of Cdc2/cyclin B protein kinase and entry into mitosis in eukaryotic cells. Cdc25C is highly regulated by multiple post-translational modifications within its N-terminal regulatory domain and site-specific protein interactions. Phosphorylation of one inhibitory site targeted by multiple kinases determines the timing of Cdc25C activation and arrests cells in G2 in response to checkpoint, stress, developmental and extracellular signals. In mitosis, phosphorylation of several Ser/Thr residues and Pin1-catalysed peptidyl-proline isomerisation produces activation. Phosphorylation of one activating site is antagonistic to the proximal inhibitory site and maintains Cdc25C activity during mitosis. Phosphorylation and interacting proteins also modulate the nuclear import and export signals on Cdc25C, inducing dramatic changes in its localisation within the cell. Thus, the regulation of Cdc25C activity and localization integrates multiple signals that govern the decision to enter mitosis.  相似文献   

4.
The G1 cyclin Cln3 is a key activator of cell-cycle entry in budding yeast. Here we show that Whi3, a negative G1 regulator of Cln3, interacts in vivo with the cyclin-dependent kinase Cdc28 and regulates its localization in the cell. Efficient interaction with Cdc28 depends on an N-terminal domain of Whi3 that is also required for cytoplasmic localization of Cdc28, and for proper regulation of G1 length and filamentous growth. On the other hand, nuclear accumulation of Cdc28 requires the nuclear localization signal of Cln3, which is also found in Whi3 complexes. Both Cln3 and Cdc28 are mainly cytoplasmic during early G1, and become nuclear in late G1. However, Whi3-deficient cells show a distinct nuclear accumulation of Cln3 and Cdc28 already in early G1. We propose that Whi3 constitutes a cytoplasmic retention device for Cln3-Cdc28 complexes, thus defining a key G1 event in yeast cells.  相似文献   

5.
Regulation of cell cycle progression involves redox (oxidation-reduction)-dependent modification of proteins including the mitosis-inducing phosphatase Cdc25C. The role of vitamin C (ascorbic acid, ASC), a known modulator of the cellular redox status, in regulating mitotic entry was investigated in this study. We demonstrated that vitamin C inhibits DNA synthesis in HeLa cells and, mainly the form of dehydroascorbic acid (DHA), delays the entry of p53-deficient synchronized HeLa and T98G cancer cells into mitosis. High concentrations of Vitamin C caused transient S and G2 arrest in both cell lines by delaying the activation of the M-phase promoting factor (MPF), Cdc2/cyclin-B complex. Although vitamin C did not inhibit the accumulation of cyclin-B1, it may have increased the level of Cdc2 inhibitory phosphorylation. This was achieved by transiently maintaining Cdc25C, the activator of Cdc2, both in low levels and in a phosphorylated on Ser216 inactive form that binds to 14-3-3 proteins contributing thus to the nuclear exclusion of Cdc25C. As expected, vitamin C prevented the nuclear accumulation of Cdc25C in both cell lines. In conclusion, it seems that vitamin C induces transient cell cycle arrest, at least in part, by delaying the accumulation and the activation of Cdc25C.  相似文献   

6.
Budding yeast CDC55 encodes a regulatory B subunit of the PP2A (protein phosphatase 2A), which plays important roles in mitotic entry and mitotic exit. The spatial and temporal regulation of PP2A is poorly understood, although recent studies demonstrated that the conserved proteins Zds1 and Zds2 stoichiometrically bind to Cdc55-PP2A and regulate it in a complex manner. Zds1/Zds2 promote Cdc55-PP2A function for mitotic entry, whereas Zds1/Zds2 inhibit Cdc55-PP2A function during mitotic exit. In this paper, we propose that Zds1/Zds2 primarily control Cdc55 localization. Cortical and cytoplasmic localization of Cdc55 requires Zds1/Zds2, and Cdc55 accumulates in the nucleus in the absence of Zds1/Zds2. By genetically manipulating the nucleocytoplasmic distribution of Cdc55, we showed that Cdc55 promotes mitotic entry when in the cytoplasm. On the other hand, nuclear Cdc55 prevents mitotic exit. Our analysis defines the long-sought molecular function for the zillion different screens family proteins and reveals the importance of the regulation of PP2A localization for proper mitotic progression.  相似文献   

7.
The Cdc25A phosphatase is an essential activator of CDK-cyclin complexes at all steps of the eukaryotic cell cycle. The activity of Cdc25A is itself regulated in part by positive and negative feedback regulatory loops performed by its CDK-cyclin substrates that occur in G1 as well as during the G1/S and G2/M transitions. However, the regulation of Cdc25A during G2 phase progression before mitotic entry has not been intensively characterized. Here, we identify by mass spectrometry analysis a new phosphorylation event of Cdc25A on Serine283. Phospho-specific antibodies revealed that the phosphorylation of this residue appears in late S/G2 phase of an unperturbed cell cycle and is performed by CDK-cyclin complexes. Overexpression studies of wild-type and non-phosphorylatable mutant forms of Cdc25A indicated that Ser283 phosphorylation increases the G2/M-promoting activity of the phosphatase without impacting its stability or subcellular localization. Our results therefore identify a new positive regulatory loop between Cdc25A and its CDK-cyclin substrates which contributes to accelerate entry into mitosis through the regulation of Cdc25A activity in G2.  相似文献   

8.
DNA-responsive checkpoints operate at the G2/M transition to prevent premature mitosis in the presence of incompletely replicated or damaged DNA. These pathways prevent mitotic entry, at least in part, by suppressing Cdc25, the phosphatase that activates Cdc2/Cyclin B. To gain insight into how checkpoint signaling controls Cdc25 function, we have carefully examined the individual steps in Cdc25 activation. We found that removal of the regulatory protein, 14-3-3, that binds to phosphorylated Cdc25 during interphase is one of the early steps in mitotic activation. Moreover, our studies unexpectedly implicated the phosphatase PP1 and the G1/S kinase Cdk2 in the process of Cdc25 activation. Here we integrate our findings and those of others to propose a model for Cdc25 activation in an effort to provide insight into novel loci of DNA-responsive checkpoint control of mitotic entry.  相似文献   

9.
DNA-responsive checkpoints operate at the G(2)/M transition to prevent premature mitosis in the presence of incompletely replicated or damaged DNA. These pathways prevent mitotic entry, at least in part, by suppressing Cdc25, the phosphatase that activates Cdc2/Cyclin B. To gain insight into how checkpoint signaling controls Cdc25 function, we have carefully examined the individual steps in Cdc25 activation. We found that removal of the regulatory protein, 14-3-3, that binds to phosphorylated Cdc25 during interphase is one of the early steps in mitotic activation. Moreover, our studies unexpectedly implicated the phosphatase PP1 and the G(1)/S kinase Cdk2 in the process of Cdc25 activation. Here we integrate our findings and those of others to propose a model for Cdc25 activation in an effort to provide insight into novel loci of DNA-responsive checkpoint control of mitotic entry.  相似文献   

10.
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.  相似文献   

11.
12.
The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis.  相似文献   

13.
AbstractThe mitotic inducer Cdc25 phosphatase controls the activation of Cdc2/cyclin B protein kinase and entry into mitosis in eukaryotic cells. Cdc25C is highly regulated by multiple post-translational modifications within its N-terminal regulatory domain and site-specific protein interactions. Phosphorylation of one inhibitory site targeted by multiple kinases determines the timing of Cdc25C activation and arrests cells in G2 in response to checkpoint, stress, developmental and extracellular signals. In mitosis, phosphorylation of several Ser/Thr residues and Pin1-catalysed peptidyl-proline isomerisation produces activation. Phosphorylation of one activating site is antagonistic to the proximal inhibitory site and maintains Cdc25C activity during mitosis. Phosphorylation and interacting proteins also modulate the nuclear import and export signals on Cdc25C, inducing dramatic changes in its localisation within the cell. Thus, the regulation of Cdc25C activity and localisation integrates multiple signals that govern the decision to enter mitosis.  相似文献   

14.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

15.
Mitosis in human cells is initiated by the protein kinase Cdc2-cyclin B1, which is activated at the end of G2 by dephosphorylation of two inhibitory residues, Thr14 and Tyr15. The G2 arrest that occurs after DNA damage is due in part to stabilization of phosphorylation at these sites. We explored the possibility that entry into mitosis is also regulated by the subcellular location of Cdc2-cyclin B1, which is suddenly imported into the nucleus at the end of G2. We measured the timing of mitosis in HeLa cells expressing a constitutively nuclear cyclin B1 mutant. Parallel studies were performed with cells expressing Cdc2AF, a Cdc2 mutant that cannot be phosphorylated at inhibitory sites. Whereas nuclear cyclin B1 and Cdc2AF each had little effect under normal growth conditions, together they induced a striking premature mitotic phenotype. Nuclear targeting of cyclin B1 was particularly effective in cells arrested in G2 by DNA damage, where it greatly reduced the damage-induced G2 arrest. Expression of nuclear cyclin B1 and Cdc2AF also resulted in significant defects in the exit from mitosis. Thus, nuclear targeting of cyclin B1 and dephosphorylation of Cdc2 both contribute to the control of mitotic entry and exit in human cells.  相似文献   

16.
Cdc25 phosphatases are essential for the activation of mitotic cyclin-Cdks, but the precise roles of the three mammalian isoforms (A, B, and C) are unclear. Using RNA interference to reduce the expression of each Cdc25 isoform in HeLa and HEK293 cells, we observed that Cdc25A and -B are both needed for mitotic entry, whereas Cdc25C alone cannot induce mitosis. We found that the G2 delay caused by small interfering RNA to Cdc25A or -B was accompanied by reduced activities of both cyclin B1-Cdk1 and cyclin A-Cdk2 complexes and a delayed accumulation of cyclin B1 protein. Further, three-dimensional time-lapse microscopy and quantification of Cdk1 phosphorylation versus cyclin B1 levels in individual cells revealed that Cdc25A and -B exert specific functions in the initiation of mitosis: Cdc25A may play a role in chromatin condensation, whereas Cdc25B specifically activates cyclin B1-Cdk1 on centrosomes.  相似文献   

17.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

18.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

19.
Maintenance of genome integrity requires a checkpoint that restrains mitosis in response to DNA damage [1]. This checkpoint is enforced by Chk1, a protein kinase that targets Cdc25 [2--7]. Phosphorylated Cdc25 associates with 14-3-3 proteins, which appear to occlude a nuclear localization signal (NLS) and thereby inhibit Cdc25 nuclear import [6, 8--14]. Proficient checkpoint arrest is thought to require Cdc25 nuclear exclusion, although definitive evidence for this model is lacking. We have tested this hypothesis in fission yeast. We show that elimination of an NLS in Cdc25 causes Cdc25 nuclear exclusion and a mitotic delay, as predicted by the model. Attachment of an exogenous NLS forces nuclear inclusion of Cdc25 in damaged cells. However, forced nuclear localization of Cdc25 fails to override the damage checkpoint. Thus, nuclear exclusion of Cdc25 is unnecessary for checkpoint enforcement. We propose that direct inhibition of Cdc25 phosphatase activity by Chk1, as demonstrated in vitro with fission yeast and human Chk1 [15, 16], is sufficient for proficient checkpoint regulation of Cdc25 and may be the primary mechanism of checkpoint enforcement in fission yeast.  相似文献   

20.
The Cdc25C phosphatase is a key regulator of mitotic entry which activity is tightly regulatedby phosphorylation. In response to DNA damage, phosphorylation at serine 216 induces thecytosolic retention of Cdc25C through 14-3-3 binding. We previously reported the ability ofthe p14ARF tumor suppressor to induce the accumulation of inactive phospho-Cdc25C(Ser216)protein as well as a decrease of Cdc25C steady state level and correlated these events with ap53-independent G2 arrest. The aim of this study was to investigate the cellular signalingpathways involved in this process. By using specific pharmacological inhibitors, wedemonstrate that activation of the ERK1/2 MAP kinases pathway is involved in the p53-independent G2 checkpoint induced by p14ARF. Moreover, we show that activated P-ERK1/2bind and phosphorylate Cdc25C on its ser216 residue following p14ARF expression, therebyidentifying Cdc25C as a new ERK1/2 target. Importantly, we further show thatphosphorylation at Ser216 by phospho-ERK1/2 promotes Cdc25C ubiquitination andproteasomal degradation, suggesting that Cdc25C proteolysis is required for a sustained G2arrest in response to p14ARF. Taken together, these results demonstrate that the MAPK ERKsignaling pathway contributes to the p53-independent antiproliferative functions of p14ARF.Furthermore, they identify a new mechanism by which phosphorylation at serine 216participates to Cdc25C inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号