首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium uptake by guard cells represents part of the osmotic motor which drives stomatal opening. Patch-clamp measurements have identified inward rectifying K+ channels capable of mediating K+ uptake in guard cells and various other plant cell types. Here we report the molecular cloning and characterization of a voltage-dependent K+ channel (KST1) from potato (Solanum tuberosum L.) guard cells. In situ hybridization shows expression of kst1 in guard cells. Two-electrode voltage-clamp and patch-clamp studies of the gene product after cRNA injection into Xenopus oocytes identified KST1 as a slowly activating, voltage-dependent, inward rectifying K+ channel. The single channel current voltage curve was linear in the range -160 to +20 mV, with a deduced single channel conductance of 7 pS in symmetrical 100 mM K+. This channel type, modulated by pH changes within the physiological range, required ATP for activation. In line with the properties of a K(+)-selective channel, KST1 was permeable to K+, Rb+ and NH4+ and excluded Na+ and Li+. Cs+ at submillimolar concentrations blocked the channel in a voltage-dependent manner. Related studies on potato guard cell protoplasts confirmed the biophysical characteristics of the kst1 gene product (KST1) in the heterologous expression system. Therefore, KST1 represents a major K+ uptake channel in potato guard cells.  相似文献   

2.
3.
Plant K(+) uptake channel types differ with respect to their voltage, Ca(2)+, and pH dependence. Here, we constructed recombinant chimeric channels between KST1, a member of the inward-rectifying, acid-activated KAT1 family, and AKT3, a member of the weakly voltage-dependent, proton-blocked AKT2/3 family. The homologous pore regions of AKT3 (amino acids 216 to 287) and KST1 (amino acids 217 to 289) have been exchanged to generate the two chimeric channels AKT3/(p)KST1 and KST1/(p)AKT3. In contrast to AKT3 wild-type channels, AKT3/(p)KST1 revealed a strong inward rectification reminiscent of that of KST1. Correspondingly, the substitution of the KST1 by the AKT3 pore led to less pronounced rectification properties of KST1/(p)AKT3 compared with wild-type KST1. Besides the voltage dependence, the interaction between the chimera and extracellular H(+) and Ca(2)+ resembled the properties of the inserted rather than the respective wild-type pore. Whereas AKT3/(p)KST1 was acid activated and Ca(2)+ insensitive, extracellular protons and Ca(2)+ inhibited KST1/(p)AKT3. The regulation of the chimeric channels by cytoplasmic protons followed the respective wild-type backbone of the chimeric channels, indicating that the intracellular pH sensor is located outside the P domain. We thus conclude that essential elements for external pH and Ca(2)+ regulation and for the rectification of voltage-dependent K(+) uptake channels are located within the channel pore.  相似文献   

4.
An appreciable number of potassium channels mediating K+ uptake have been identified in higher plants. Promoter-beta-glucuronidase reporter gene studies were used here to demonstrate that SKT1, encoding a potato K+ inwardly rectifying channel, is expressed in guard cells in addition to KST1 previously reported. However, whereas KST1 was found to be expressed in essentially all mature guard cells, SKT1 expression was almost exclusively restricted to guard cells of the abaxial leaf epidermis. This suggests that different types of K+ channel subunits contribute to channel formation in potato guard cells and therefore differential regulation of stomatal movements in the two leaf surfaces. The overlapping expression pattern of SKT1 and KST1 in abaxial guard cells indicates that K+in channels of different sub-families contribute to ionic currents in this cell type, thus explaining the different properties of channels expressed solely in heterologous systems and those endogenous to guard cells. Interaction studies had previously suggested that plant K+ inward rectifiers form clusters via their conserved C-terminal domain, KT/HA. K+ channels co-expressed in one cell type may therefore form heteromers, which increase functional variability of K+ currents, a phenomenon well described for animal voltage-gated K+ channels. Co-expression of KST1 and SKT1 in Xenopus oocytes resulted in currents with an intermediate sensitivity towards Cs+, suggesting the presence of heteromers, and a sensitivity towards external Ca2+, which reflected the property of the endogenous K+in current in guard cells. Modulation of KST1 currents in oocytes by co-expressing KST1 with a SKT1 pore-mutant, which by itself was not able to confer activating K+ currents, demonstrated the possibility that KST1 and SKT1 co-assemble to hetero-oligomers. Furthermore, various C-terminal deletions of the mutated SKT1 channel restored KST1 currents, showing that the C-terminal KT motif is essential for heteromeric channel formation.  相似文献   

5.
Following the biophysical analysis of plant K+ channels in their natural environment, three members from the green branch of the evolutionary tree of life KAT1, AKT1 and KST1 have recently been identified on the molecular level. Among them, we focused on the expression and characterization of the Arabidopsis thaliana K+ channel KAT1 in the insect cell line Sf9. The infection of Sf9 cells with KAT1-recombinant baculovirus resulted in functional expression of KAT1 channels, which was monitored by inward-rectifying, K+-selective (impermeable to Na+ and even NH4+) ionic conductance in whole-cell patch-clamp recordings. A voltage threshold as low as −60 to −80 mV for voltage activation compared to other plant inward rectifiers in vivo, and to in vitro expression of KAT1 in Xenopus oocytes or yeast, may be indicative for channel modulation by the expression system. A rise in cytoplasmic Ca2+ concentration (up to 1 mM), a regulator of the inward rectifier in Vicia faba guard cells, did not modify the voltage dependence of KAT1 in Sf9 cells. The access to channel function on one side and channel protein on the other make Sf9 cells a suitable heterologous system for studies on the biophysical properties, post-translational modification and assembly of a green inward rectifier.  相似文献   

6.
Increased guard cell cytosolic [Ca2+] is known to be involved in signal transduction pathways leading to stomatal closure, and inhibit the inward rectifying guard cell K+ channel KAT1. Guard cell calcium-dependent protein kinase (CDPK) has been shown to phosphorylate KAT1; such phosphorylation is known to modulate other K+ channels involved in signal transduction cascades. The work reported here focused on demonstrating CDPK-dependent inhibition of KAT1 currents. A cDNA encoding soybean CDPK was generated and it's translation product was shown to be functional; demonstrating Ca2+-dependent autophosphorylation and phosphorylation of a target protein. Ion currents were monitored using voltage clamp techniques upon expression of KAT1 in Xenopus laevis oocytes. Coexpression of recombinant CDPK with KAT1 in oocytes altered the kinetics and magnitude of induced K+ currents; at a given hyperpolarizing command voltage, the magnitude of KAT1 currents was reduced and the half-time for channel activation was increased. This finding supports a model of Ca2+-dependent ABA inhibition of inward K+ currents in guard cells as being mediated by CDPK phosphorylation of KAT1.  相似文献   

7.
Plant K+ channel alpha-subunits assemble indiscriminately.   总被引:4,自引:0,他引:4       下载免费PDF全文
In plants a large diversity of inwardly rectifying K+ channels (K(in) channels) has been observed between tissues and species. However, only three different types of voltage-dependent plant K+ uptake channel subfamilies have been cloned so far; they relate either to KAT1, AKT1, or AtKC1. To explore the mechanisms underlying the channel diversity, we investigated the assembly of plant inwardly rectifying alpha-subunits. cRNA encoding five different K+ channel alpha-subunits of the three subfamilies (KAT1, KST1, AKT1, SKT1, and AtKC1) which were isolated from different tissues, species, and plant families (Arabidopsis thaliana and Solanum tuberosum) was reciprocally co-injected into Xenopus oocytes. We identified plant K+ channels as multimers. Moreover, using K+ channel mutants expressing different sensitivities to voltage, Cs+, Ca2+, and H+, we could prove heteromers on the basis of their altered voltage and modulator susceptibility. We discovered that, in contrast to animal K+ channel alpha-subunits, functional aggregates of plant K(in) channel alpha-subunits assembled indiscriminately. Interestingly, AKT-type channels from A. thaliana and S. tuberosum, which as homomers were electrically silent in oocytes after co-expression, mediated K+ currents. Our findings suggest that K+ channel diversity in plants results from nonselective heteromerization of different alpha-subunits, and thus depends on the spatial segregation of individual alpha-subunit pools and the degree of temporal overlap and kinetics of expression.  相似文献   

8.
Stefan Hoth  Rainer Hedrich 《Planta》1999,209(4):543-546
 Potassium channels are inhibited by several mono- and divalent cations. To identify sites involved in the interaction between K+ channels and cationic effectors, we expressed the potato (Solanum tuberosum L.) guard-cell K+-uptake channel KST1 in Xenopus oocytes. This channel was reversibly blocked by extracellular Zn2+ in the micromolar range. In the presence of this heavy metal, steady-state currents were reduced in a pH-dependent but voltage-independent manner. Since Zn2+-inhibition was less effective at elevated external proton concentrations, we generated alanine mutants with respect to both extracellular histidines in KST1. Whereas substitution of the pore histidine H271 resulted in a reduced blockade by Zn2+, the channel mutant KST1-H160A in the S3-S4 linker lost most of its Zn2+ sensitivity. Since both histidines alter the susceptibility of KST1 to Zn2+, the block may predominantly result from these two sites. We thus conclude that the S3-S4 linker is involved in the formation of the outer pore. Received: 3 May 1999 / Accepted: 8 July 1999  相似文献   

9.
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of +100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K(weak) gating. Instead, a lysine residue in S4, highly conserved among all K(weak) channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward-rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K(in) channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is approximately 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it.  相似文献   

10.
Potassium channels in plants play a variety of important physiological roles including K(+) uptake into roots, stomatal and leaf movements, and release of K(+) into the xylem. This review summarizes current knowledge about a class of plant genes whose products are K(+) channel-forming proteins. Potassium channels of this class belong to a superfamily characterized by six membrane-spanning domains (S1-6), a positively charged S4 domain and a region between the S5 and S6 segments that forms the channel selectivity filter. These channels are voltage dependent, which means the membrane potential modifies the probability of opening (P(o)). However, despite these channels sharing the same topology as the outward-rectifying K(+) channels, which are activated by membrane depolarization, some plant K(+) channels such as KAT1/2 and KST1 open with hyperpolarizing voltages. In outward-rectifying K(+) channels, the change in P(o) is achieved through a voltage sensor formed by the S4 segment that detects the voltage transferring its energy to the gate that controls pore opening. This coupling is achieved by an outward displacement of the charges contained in S4. In KAT1, most of the results indicate that S4 is the voltage sensor. However, how the movement of S4 leads to opening remains unanswered. On the basis of recent data, we propose here that in plant-inward rectifiers an inward movement of S4 leads to channel opening and that the difference between it and outward-rectifying channels resides in the mechanism that couples gating charge displacement with pore opening.  相似文献   

11.
Voltage-dependent potassium uptake channels represent the major pathway for K+ accumulation underlying guard cell swelling and stomatal opening. The core structure of these Shaker-like channels is represented by six transmembrane domains and an amphiphilic pore-forming region between the fifth and sixth domain. To explore the effect of point mutations within the stretch of amino acids lining the K+ conducting pore of KAT1, an Arabidopsis thaliana guard cell Kin channel, we selected residues deep inside and in the periphery of the pore. The mutations on positions 256 and 267 strongly altered the interaction of the permeation pathway with external Ca2+ ions. Point mutations on position 256 in KAT1 affected the affinity towards Ca2+, the voltage dependence as well as kinetics of the Ca2+ blocking reaction. Among these T256S showed a Ca2+ phenotype reminiscent of an inactivation-like process, a phenomenon unknown for Kin channels so far. Mutating histidine 267 to alanine, a substitution strongly affecting C-type inactivation in Shaker, this apparent inactivation could be linked to a very slow calcium block. The mutation H267A did not affect gating but hastened the Ca2+ block/unblock kinetics and increased the Ca2+ affinity of KAT1. From the analysis of the presented data we conclude that even moderate point mutations in the pore of KAT1 seem to affect the pore geometry rather than channel gating.  相似文献   

12.
Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell K+in channel, KAT1, which shows enhanced resistance to the Cs+ block. Stomata in these transgenic lines opened in the presence of external Cs+. Patch-clamp experiments with transgenic guard cells showed that inward K+(in) currents were blocked less by Cs+ than were K+ currents in controls. These data provide direct evidence that KAT1 functions as a plasma membrane K+ channel in vivo and that K+in channels constitute an important mechanism for light-induced stomatal opening. In addition, biophysical properties of K+in channels in guard cells indicate that components in addition to KAT1 may contribute to the formation of K+in channels in vivo.  相似文献   

13.
Stomatal opening, which controls gas exchanges between plants and the atmosphere, results from an increase in turgor of the two guard cells that surround the pore of the stoma. KAT1 was the only inward K(+) channel shown to be expressed in Arabidopsis guard cells, where it was proposed to mediate a K(+) influx that enables stomatal opening. We report that another Arabidopsis K(+) channel, KAT2, is expressed in guard cells. More than KAT1, KAT2 displays functional features resembling those of native inward K(+) channels in guard cells. Coexpression in Xenopus oocytes and two-hybrid experiments indicated that KAT1 and KAT2 can form heteromultimeric channels. The data indicate that KAT2 plays a crucial role in the stomatal opening machinery.  相似文献   

14.
The selectivity filter of all known T-type Ca2+ channels is built by an arrangement of two glutamate and two aspartate residues, each one located in the P-loops of domains I-IV of the alpha1 subunit (EEDD locus). The mutations of the aspartate residues to glutamate induce changes in the conduction properties, enhance Cd2+ and proton affinities, and modify the activation curve of the channel. Here we further analyze the role of the selectivity filter in the gating mechanisms of T-type channels by comparing the kinetic properties of the alpha1G subunit (CaV3.1) to those of pore mutants containing aspartate-to-glutamate substitution in domains III (EEED) or IV (EEDE). The change of the extracellular pH induced similar effects on the activation properties of alpha1G and both pore mutants, indicating that the larger affinity of the mutant channels for protons is not the cause of the gating modifications. Both mutants showed alterations in several gating properties with respect to alpha1G, i.e., faster macroscopic inactivation in the voltage range from -10 to 50 mV, positive voltage shift and decrease in the voltage sensitivity of the time constants of activation and deactivation, decrease of the voltage sensitivity of the steady-state inactivation, and faster recovery from inactivation for long repolarization periods. Kinetic modeling suggests that aspartate-to-glutamate mutations in the EEDD locus of alpha1G modify the movement of the gating charges and alter the rate of several gating transitions. These changes are independent of the alterations of the selectivity properties and channel protonation.  相似文献   

15.
I Marten  T Hoshi 《Biophysical journal》1998,74(6):2953-2962
Functional roles of different domains (pore region, S4 segment, N-terminus) of the KAT1 potassium channel in its voltage-dependent gating were electrophysiologically studied in Xenopus oocytes. The KAT1 properties did not depend on the extracellular K+ concentration or on residue H267, equivalent to one of the residues known to be important in C-type inactivation in Shaker channels, indicating that the hyperpolarization-induced KAT1 inward currents are related to the channel activation rather than to recovery from inactivation. Neutralization of a positively charged amino acid in the S4 domain (R176S) reduced the gating charge movement, suggesting that it acts as a voltage-sensing residue in KAT1. N-terminal deletions alone (e.g., delta20-34) did not affect the gating charge movement. However, the deletions paradoxically increased the voltage sensitivity of the R176S mutant channel, but not that of the wild-type channel. We propose a simple model in which the N-terminus determines the KAT1 voltage sensitivity by contributing to the electric field sensed by the voltage sensor.  相似文献   

16.
Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 (``m2KAT1'; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels. Received: 31 July 1995/Revised: 5 January 1996  相似文献   

17.
Voltage-dependent K+ channels consist of a voltage-sensing region and a pore-forming region. Here we have identified the negative residues of the second transmembrane segment in the plant voltage-dependent K+ channel, KAT1, which involves the function of voltage sensing. Point mutations at D95 and D105 but not D89 and D116 failed to complement the K+ uptake deficient properties of the mutant yeast. In vitro translation and translocation experiments showed that the membrane integration of the third and fourth segments involving voltage sensor were impaired by the replacement of D95 or D105 by serine. These data show that both the residues play a crucial role in the membrane topogenesis of the voltage sensor in KAT1.  相似文献   

18.
A 48-kDa protein kinase was detected in Vicia faba guard cell protoplasts by an in-gel protein kinase assay using a recombinant peptide (KAT1C) of the carboxyl-terminus of an inward-rectifying voltage-dependent K+ channel cloned from Arabidopsis thaliana, KAT1. This protein kinase (ABR* kinase) was activated by pretreatment of guard cell protoplasts with ABA, but not by pretreatment with IAA, 2,4-D, kinetin or GA3. The activation of ABR* kinase was dependent on the time and concentration of ABA. The kinase activity was sensitive to staurosporine and K-252a, protein kinase inhibitors, and insensitive to Ca2+. No ABR* kinase activity was detected in mesophyll cell protoplasts. These characteristics of ABR* kinase are consistent with those of an ABA-responsive protein kinase (ABR kinase) reported previously [Mori and Muto (1997), Plant Physiol. 113: 833]. These results indicate that ABR* kinase phosphorylates the inward-rectifying K+ channel in response to treatment of stomatal guard cells with ABA. The data reported here provide evidence that this ABA-responsive protein kinase may promote ABA signaling by directly phosphorylating guard cell ion channels.  相似文献   

19.
Inward-rectifying potassium (K+(in)) channels in guard cells have been suggested to provide a pathway for K+ uptake into guard cells during stomatal opening. To test the proposed role of guard cell K+(in) channels in light-induced stomatal opening, transgenic Arabidopsis plants were generated that expressed dominant negative point mutations in the K+(in) channel subunit KAT1. Patch-clamp analyses with transgenic guard cells from independent lines showed that K+(in) current magnitudes were reduced by approximately 75% compared with vector-transformed controls at -180 mV, which resulted in reduction in light-induced stomatal opening by 38% to 45% compared with vector-transformed controls. Analyses of intracellular K+ content using both sodium hexanitrocobaltate (III) and elemental x-ray microanalyses showed that light-induced K+ uptake was also significantly reduced in guard cells of K+(in) channel depressor lines. These findings support the model that K+(in) channels contribute to K+ uptake during light-induced stomatal opening. Furthermore, transpirational water loss from leaves was reduced in the K+(in) channel depressor lines. Comparisons of guard cell K+(in) current magnitudes among four different transgenic lines with different K+(in) current magnitudes show the range of activities of K+(in) channels required for guard cell K+ uptake during light-induced stomatal opening.  相似文献   

20.
Potassium channels in plants play a variety of important physiological roles including K+ uptake into roots, stomatal and leaf movements, and release of K+ into the xylem. This review summarizes current knowledge about a class of plant genes whose products are K+ channel-forming proteins. Potassium channels of this class belong to a superfamily characterized by six membrane-spanning domains (S1-6), a positively charged S4 domain and a region between the S5 and S6 segments that forms the channel selectivity filter. These channels are voltage dependent, which means the membrane potential modifies the probability of opening (Po). However, despite these channels sharing the same topology as the outward-rectifying K+ channels, which are activated by membrane depolarization, some plant K+ channels such as KAT1/2 and KST1 open with hyperpolarizing voltages. In outward-rectifying K+ channels, the change in Po is achieved through a voltage sensor formed by the S4 segment that detects the voltage transferring its energy to the gate that controls pore opening. This coupling is achieved by an outward displacement of the charges contained in S4. In KAT1, most of the results indicate that S4 is the voltage sensor. However, how the movement of S4 leads to opening remains unanswered. On the basis of recent data, we propose here that in plant-inward rectifiers an inward movement of S4 leads to channel opening and that the difference between it and outward-rectifying channels resides in the mechanism that couples gating charge displacement with pore opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号