首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Marek's Disease (MD) is an avian neoplastic disease caused by Marek's Disease Virus (MDV). The mechanism of virus transition between the lytic and latent cycle is still being investigated; however, post-translational modifications, especially phosphorylation, have been thought to play an important role. Previously, our group has used strong cation exchange chromatography in conjunction with reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the changes in global proteomic expression upon MDV infection (Ramaroson , M. F.; Ruby, J.; Goshe, M. B.; Liu , H.-C. S. J. Proteome Res. 2008, 7, 4346-4358). Here, we extend our study by developing an effective separation and enrichment approach to investigate the changes occurring in the phosphoproteome using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) to fractionate peptides from chicken embryo fibroblast (CEF) digests and incorporating a subsequent IMAC enrichment step to selectively target phosphorylated peptides for LC-MS/MS analysis. To monitor the multidimensional separation between mock- and MDV-infected CEF samples, a casein phosphopeptide mixture was used as an internal standard. With LC-MS/MS analysis alone, no CEF phosphopeptides were detected, while with ERLIC fractionation only 1.2% of all identified peptides were phosphorylated. However, the incorporation of IMAC enrichment with ERLIC fractionation provided a 50-fold increase in the percentage of identified phosphopeptides. Overall, a total of 581 unique phosphopeptides were identified (p < 0.05) with those of the MDV-infected CEF sample containing nearly twice as many as the mock-infected control of which 11% were unique to MDV proteins. The changes in the phosphoproteome are discussed including the role that microtubule-associated proteins may play in MDV infection mechanisms.  相似文献   

2.
Marek’s disease is a lymphoproliferative neoplastic disease of the chicken, which poses a serious threat to poultry health. Marek’s disease virus (MDV)-induced T-cell lymphoma is also an excellent biomedical model for neoplasia research. Recently, miRNAs have been demonstrated to play crucial roles in mediating neoplastic transformation. To investigate host miRNA expression profiles in the tumor transformation phase of MDV infection, we performed deep sequencing in two MDV-infected samples (tumorous spleen and MD lymphoma from liver), and two non-infected controls (non-infected spleen and lymphocytes). In total, 187 and 16 known miRNAs were identified in chicken and MDV, respectively, and 17 novel chicken miRNAs were further confirmed by qPCR. We identified 28 down-regulated miRNAs and 11 up-regulated miRNAs in MDV-infected samples by bioinformatic analysis. Of nine further tested by qPCR, seven were verified. The gga-miR-181a, gga-miR-26a, gga-miR-221, gga-miR-222, gga-miR-199*, and gga-miR-140* were down-regulated, and gga-miR-146c was up-regulated in MDV-infected tumorous spleens and MD lymphomas. In addition, 189 putative target genes for seven differentially expressed miRNAs were predicted. The luciferase reporter gene assay showed interactions of gga-miR-181a with MYBL1, gga-miR-181a with IGF2BP3, and gga-miR-26a with EIF3A. Differential expression of miRNAs and the predicted targets strongly suggest that they contribute to MDV-induced lymphomagenesis.  相似文献   

3.
4.
DNA was extracted from [(3)H]thymidine-labeled Marek's disease virus (MDV) and purified by two cycles of CsCl gradient centrifugation in a fixed-angle rotor. The DNA was transcribed in vitro into (32)P-labeled complementary RNA (cRNA). MDV cRNA did not hybridize with DNA from chicken embryo fibroblast cultures or from chicken spleen, but hybridized efficiently with DNA from MDV particles or MDV-infected cell cultures. Five Marek's disease tumors from different chickens and different organs (ovary, liver, testis) were all found to contain MDV DNA sequences. The relative amount of MDV DNA varied from tumor to tumor and was between 3 and 15 virus genome equivalents per cell. The content of virus DNA per cell in spleens from tumor-bearing chickens was much lower than in tumors from the same animals. MDV-infected cell cultures contained a large proportion (28-59%) of virus antigen-positive cells, as measured by immunofluorescence, but tumor cells were negative in this respect (<0.02% positive cells). These data indicate that MDV is present in a provirus form in tumor cells.  相似文献   

5.
We describe herein the effects of Marek's disease herpesvirus (MDV) on cholesterol and cholesteryl ester metabolism in cultured chicken arterial smooth muscle cells. Infection of arterial smooth muscle cells from specific pathogen-free chickens with MDV, but not a virus control, herpesvirus of turkeys led to a 7-10-fold increase in the accumulation of free and esterified cholesterol and a 2-fold increase in phospholipids. The cellular lipid changes observed in the MDV-infected arterial smooth muscle cells resulted, in part, from the following: decreased low-density lipoprotein-cholesteryl ester hydrolysis due to decreased lysosomal (acid) cholesteryl ester hydrolytic activity; increased de novo synthesis of cholesterol; decreased excretion of free cholesterol; and, both increased cholesteryl ester synthetic activity and decreased cytoplasmic (neutral) cholesteryl ester hydrolytic activity which resulted in increased incorporation of oleic acid into cholesteryl ester. Other changes noted in the MDV-infected cells as compared to uninfected cells included a 2-fold increase in both total protein synthesis and lysosomal and microsomal marker enzyme activities. These alterations in lipid and protein metabolism in MDV-infected arterial smooth muscle cells may explain in part our in vivo findings that herpesvirus (MDV) infection of specific pathogen-free chickens fed a normocholesterolemic diet will induce arterial thickening and lipid accumulation resembling human atherosclerosis.  相似文献   

6.
Marek's disease (MD) is an oncogenic disease of chickens caused by MD virus (MDV). Among the major glycoproteins found in MDV-infected cells are gp100, gp60, and gp49, detected by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis with antisera previously shown to be reactive with B antigen in immunodiffusion analysis. Following treatment with tunicamycin (TM), an inhibitor of N-linked glycosylation, the same sera were reported to detect two molecules called pr88 and pr44. However, the gene encoding B antigen was not unequivocally identified. Recently, an MDV homolog of the gene encoding herpes simplex virus glycoprotein B (gB) was identified and sequenced (L. J. N. Ross, M. Sanderson, S. D. Scott, M. M. Binns, T. Doel, and B. Milne, J. Gen. Virol. 70:1789-1804, 1989). To determine whether the MDV gB homolog gene might encode the B antigen, antisera against trpE fusion proteins of the MDV gB homolog (trpE-MDV-gB) were prepared. These antisera immunoprecipitated gp100, gp60, gp49, and a 92-kDa precursor polypeptide (pr88, now designated 92-kDa pr88, in the presence of TM) from MDV-infected cell lysates. On the basis of size comparison, trpE-MDV-gB competition and blocking assays, and the fact that gp100, gp60, gp49, and 92-kDa pr88 could be detected in MDV-infected cells with antisera specific to both MDV B antigen and the gB homolog, it was concluded that (i) the MDV gB homolog gene encodes MDV B antigen and (ii) 92-kDa pr88 is the primary precursor polypeptide. The antisera against trpE-MDV-gB also contained antibody reactive with the herpesvirus of turkey gB homolog, consistent with the known antigenic relatedness between the MDV and herpesvirus of turkey B antigens. TM inhibition data and results from pulse-chase analysis with MDV-infected cells show that MDV gB homolog processing involves cotranslational glycosylation of 92-kDa pr88 to form gp100, which is then cleaved to form gp60 and gp49, the N- and C-terminal halves, respectively, of gp100. This processing pathway is consistent with those of other gB homologs, further supporting the gene identification described above. The conclusions of this study will facilitate future research on the immunobiology of MD, especially studies on the mechanism of immunoprotection.  相似文献   

7.
ABSTRACT: BACKGROUND: Marek's disease virus (MDV), an oncogenic alpha-herpesvirus, causes a devastating disease in chickens characterized by development of lymphoblastoid tumors in multiple organs. Microsatellite instability (MSI), a symptom of defect in DNA mismatch repair function, is a form of genomic instability frequently detected in many types of tumors. However, the involvement of MSI in MDV-infected cells has not been investigated. In this study, we determined the presence and frequency of MSI in primary chicken embryo fibroblasts infected with or without virulent RB-1B strain of MDV in vitro. RESULTS: 118 distinct microsatellite markers were analyzed by polymerase chain reaction (PCR) in 21 samples. MSI was found in 91 of 118 markers, and 12 out of 118 demonstrated frequency of MSI at [greater than or equal to] 40%. 27 of 118 microsatellite loci did not show microsatellite instability. CONCLUSIONS: These findings showed that MSI was a real event occurring in primary chicken embryo fibroblasts infected with MDV in vitro as evidenced by the high frequency of MSI, and may be specifically associated with genome alteration of host cells during MDV infected.  相似文献   

8.
9.
Buza JJ  Burgess SC 《Proteomics》2007,7(8):1316-1326
Marek's disease (MD) in the chicken, caused by the highly infectious MD alpha-herpesvirus (MDV), is both commercially important and a unique, naturally occurring model for human T-cell lymphomas overexpressing the Hodgkin's disease antigen, CD30. Here, we used proteomics as a basis for modeling the molecular functions and biological processes involved in MDV-induced lymphomagenesis. Proteins were extracted from an MDV-transformed cell line and were then identified using 2-D LC-ESI-MS/MS. From the resulting 3870 cellular and 21 MDV proteins we confirm the existence of 3150 "predicted" and 12 "hypothetical" chicken proteins. The UA-01 proteome is proliferative, differentiated, angiogenic, pro-metastatic and pro-immune-escape but anti-programmed cell death, -anergy, -quiescence and -senescence and is consistent with a cancer phenotype. In particular, the pro-metastatic integrin signaling pathway and the ERK/MAPK signaling pathways were the two predominant signaling pathways represented. The cytokines, cytokine receptors, and their related proteins suggest that UA-01 has a regulatory T-cell phenotype.  相似文献   

10.
Two Marek's disease virus (MDV) field strains were isolated from chickens with tumors independently from Guangdong and Guangxi provinces, and it was confirmed that there were no co-infections with reticuloendotheliosis viruses (REV) in chicken embryo fibroblast cells (CEF) in indirect fluorescence antibody test (IFA) with REV-specific monoclonal antibodies. By dot blot hybridization and PCR of genomic DNA of MDV-infected CEF, it was indicated that LTR fragments of REV genome were integrated into genome of these two MDV field strains. To amplify and clone the integrated REV LTR with MDV sequence at the junction, 4 primers from REV LTR and 7 primers from MDV genome fragment with REV LTR insertion hot points were synthesized and 28 (4x7) pairs of primers (one from REV and another from MDV for each pair) were used in PCR while using the genomic DNA of both strains as the templates. The sequence data demonstrated that both recombinant field strains contained the same REV LTR inserted into MDV at the identical sites in US fragment of the genomes. From the above, it was speculated that both recombinant field MDVs were originated from a same recombinant virus and spread among chicken flocks in two provinces.  相似文献   

11.
Two Marek's disease virus (MDV) field strains were isolated from chickens with tumors independently from Guangdong and Guangxi provinces, and it was confirmed that there were no co-infections with reticuloendotheliosis viruses (REV) in chicken embryo fibroblast cells (CEF) in indirect fluorescence antibody test (IFA) with REV-specific monoclonal antibodies. By dot blot hybridization and PCR of genomic DNA of MDV-infected CEF, it was indicated that LTR fragments of REV genome were integrated into genome of these two MDV field strains. To amplify and clone the integrated REV LTR with MDV sequence at the junction, 4 primers from REV LTR and 7 primers from MDV genome fragment with REV LTR insertion hot points were synthesized and 28 (4x7) pairs of primers (one from REV and another from MDV for each pair) were used in PCR while using the genomic DNA of both strains as the templates. The sequence data demonstrated that both recombinant field strains contained the same REV LTR inserted into MDV at the identical sites in US fragment of the genomes. From the above, it was speculated that both recombinant field MDVs were originated from a same recombinant virus and spread among chicken flocks in two provinces.  相似文献   

12.
L T Wen  A Tanaka    M Nonoyama 《Journal of virology》1988,62(10):3764-3771
A new Marek's disease virus (MDV) nuclear antigen (MDNA) was identified in two MDV-transformed T-lymphoblastoid cell lines, MKT-1 and MSB-1, derived from chickens bearing tumors induced by MDV. This MDNA was not detected in MSB-1 cells maintained in iododeoxyuridine, which activates the latent MDV genome. Moreover, it was not found in chicken embryo fibroblasts undergoing productive and cytolytic infection with MDV. Expression of MDNA is not related to strain pathogenicity in chickens, because chicken embryo fibroblasts productively infected with the pathogenic RBIB strain or the nonpathogenic CV-1 strain of MDV did not express this antigen. DNA-protein immunoprecipitation studies revealed that MDNA bound to two sites in the 190,00-base-pair (bp) MDV genome. One of these loci identified by MDNA obtained from MKT-1 and MSB-1 cells corresponded to a 476-bp segment within the short unique region of BamHI-A MDV DNA. A second locus located in a 280-bp segment within the short inverted repeat region of BamHI-A was also identified by MDNA from MSB-1 cells but not by MDNA obtained from MKT-1 cells. Analyses of the nucleotide sequence by DNase digestion showed that MDNA protected a 60-bp segment spanning a 22-bp palindromic sequence of the short unique region and a 103-bp sequence encompassing a 32-bp palindrome in the short inverted repeat region of BamHI-A MDV DNA.  相似文献   

13.
Zhang N  Chen R  Young N  Wishart D  Winter P  Weiner JH  Li L 《Proteomics》2007,7(4):484-493
Both organic solvent and surfactant have been used for dissolving membrane proteins for shotgun proteomics. In this work, two methods of protein solubilization, namely using 60% methanol or 1% SDS, to dissolve and analyze the inner membrane fraction of an Escherichia coli K12 cell lysate were compared. A total of 358 proteins (1417 unique peptides) from the methanol-solubilized protein mixture and 299 proteins (892 peptides) from the SDS-solubilized sample-were identified by using trypsin digestion and 2-D LC-ESI MS/MS. It was found that the methanol method detected more hydrophobic peptides, resulting in a greater number of proteins identified, than the SDS method. We found that 159 out of 358 proteins (44%) and 120 out of 299 proteins (40%) detected from the methanol- and SDS-solubilized samples, respectively, are integral membrane proteins. Among the 190 integral membrane proteins 70 were identified exclusively in the methanol-solubilized sample, 89 were identified by both methods, and only 31 proteins were exclusively identified by the SDS method. It is shown that the integral membrane proteins reflected the theoretical proteome for number of transmembrane helices, length, functional class, and topology, indicating there was no bias in the proteins identified.  相似文献   

14.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   

15.
PHA responses have been measured in lymphoid cell cultures prepared by mixing normal chicken spleen cells with spleen or thymus cells from syngeneic chickens infected with the oncogenic herpesvirus MDV. Results of these studies may be summarized as follows: 1) spleen cells from MDV-infected chickens with visceral lymphomas inhibit the PHA response of normal spleen cells possibly by release of soluble inhibitory factors in response to the mitogen; 2) lymphoid cells from asymptomatic MDV-infected chickens, although hyporeactive themselves to PHA, can have a stimulatory effect on PHA responses of normal spleen cells in mixed cultures; 3) spleen cells from MDV-infected chickens, effectively protected from viral oncogenesis by HVT vaccination, show normal reactivity to PHA in spearate cultures and may react in mixed cultures like normal lymphocytes, with neither a pronounced stimulatory nor inhibitory effect on the PHA response of normal spleen cells.  相似文献   

16.
Controversy exists regarding the proper mining of the human serum proteome. Because of the analytical challenges of accurately measuring samples containing a very large dynamic range of protein concentrations, current practices have employed depletion of the highly abundant housekeeping serum proteins, such as albumin and immunoglobins. There is question as to the selectivity of depletion, namely, is there loss of other non abundant serum proteins along with albumin, haptoglobin and other commonly depleted proteins. In this study, human serum was analyzed with and without immunoaffinity depletion of the six most abundant proteins by multidimensional liquid chromatography tandem mass spectrometry. Two replicates of each experiment were conducted and compared against one another. In both depleted and nondepleted replicates there was a 73% and 72% overlap of identified peptides and a 64% and 78% overlap of identified proteins, respectively. Of 262 unique proteins identified in the four experiments, 82 were found in common to all four experiments, 142 unique to the depleted serum, and 38 unique to the nondepleted serum. Although serum depletion of highly abundant proteins significantly increased the number of proteins identified, both the degree of sample complexity and this depletion method resulted in a nonselective loss of other proteins.  相似文献   

17.
18.
Onchocerca volvulus, the causative agent of onchocerciasis, infects over 20 million people and can cause severe dermatitis and ocular conditions including blindness. Current treatments employed in mass drug administration programs do not kill adult female worms, and common diagnostic tests cannot reliably assess viability of adult worms. There is an urgent need for better diagnostic tests to facilitate monitoring the efficacy of new treatments and disease elimination efforts. Here, eight plasma samples collected from individuals infected with O. volvulus and seven from uninfected individuals were analyzed by MS/MS spectrometry to directly identify O. volvulus proteins present in infected but absent in uninfected control samples. This direct proteomic approach for biomarker discovery had not been previously employed for onchocerciasis. Among all detected proteins, 19 biomarker candidates were supported by two or more unique peptides, identified in the plasma of at least three O. volvulus-infected human samples and absent in all control samples. Comprehensive analysis and ranking of these candidates included detailed functional annotation and a review of RNA-seq gene expression profiles. Isotope-labeled standard peptides were run in parallel and validated MS/MS peptide identifications for 15 peptides from 11 of the 19 proteins, and two infected urine and one uninfected urine sample was used for additional validation. A major antigen/OVOC11613 was identified as the most promising candidate with eight unique peptides across five plasma samples and one urine sample. Additional strong candidates included OVOC1523/ATP synthase, OVOC247/laminin and OVOC11626/PLK5, and along with OVOC11613, and were also detected in urine samples from onchocerciasis patients. This study has identified a promising novel set of proteins that will be carried forward to develop assays that can be used for diagnosis of O. volvulus infections and for monitoring treatment efficacy.  相似文献   

19.
20.
The myelin sheath is an electrically insulating layer that consists of lipids and proteins. It plays a key role in the functioning of the nervous system by allowing fast saltatory conduction of nerve pulses. Profiling of the proteins present in myelin is an indispensable prerequisite to better understand the molecular aspects of this dynamic, functionally active membrane. Two types of protein, the myelin basic protein and the proteolipid protein, account for nearly 85% of the protein content in myelin. Identification and characterization of the other "minor" proteins is, in this respect, a real challenge. In the present work, two proteomic strategies were applied in order to study the protein composition of myelin from the murine central nervous system. First, the protein mixture was separated by 2D-gel electrophoresis and, after spot excision and in-gel digestion, samples were analyzed by mass spectrometry. Via this approach, we identified 57 protein spots, corresponding to 38 unique proteins. Alternatively, the myelin sample was digested by trypsin and the resulting peptide mixture was further analyzed by off-line 2D-liquid chromatography. After the second-dimension separation (nanoLC), the peptides were spotted "on-line" onto a MALDI target and analyzed by MALDI TOF-TOF mass spectrometry. We identified 812 peptides by MALDI MS/MS, representing 93 proteins. Membrane proteins, low abundant proteins, and highly basic proteins were all represented in this shotgun proteomic approach. By combining the results of both approaches, we can present a comprehensive proteomic map of myelin, comprising a total of 103 protein identifications, which is of utmost importance for the molecular understanding of white matter and its disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号