首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Zusammenfassung Bei dem ConchostracenLeptestheria dahalacensis kommen auf den ersten Antennen etwa 600 gleich aussehende Sinneshaare vor, die in Gruppen von jeweils 25–30 zusammengefaßt sind. Diese Sinneshaare sind in zwei Teile gegliedert, die durch das lichtmikroskopisch gut sichtbare Basalstück (basal bead) voneinander getrennt sind. Dieses bildet die Basis des Haares, dessen Wand im wesentlichen aus Epicuticula besteht. Apikal wird das Haar durch das Endkügelchen (terminal pellet) abgeschlossen. Das Basalstück wird von der untersten Lage der Epicuticula gebildet. Die 4–10 Receptorcilien, die jeweils einzeln ebensovielen Dendriten aufsitzen, ziehen aus dem inneren Teil des Rezeptors, der von insgesamt 5 Hüllzellen umgeben wird, durch das Basalstück, in dem sie stark eingeengt werden und verzweigen sich dann im äußeren Teil des Rezeptors. Sie ziehen bis zum Endkügelchen, in das sie durch einen Porus, den man als Häutungsporus ansprechen kann, eintreten. In der Häutungsvorbereitung wird der Haarbalg von der Hüllzelle 5, das Basalstück von der Hüllzelle 4, der Haarschaft dagegen von der Hüllzelle 3 gebildet. Dabei spaltet sich die Hüllzelle 3 ringspaltförmig auf, so daß in diesem Spalt der neuangelegte Haarschaft handschuhfingerförmig eingestülpt liegt. Die Hüllzelle 2 formt die Spitze des neuen Haares, während die Dendritenscheide von der Hüllzelle 1 abgegeben wird.
The receptors on the first antennae ofLeptestheria dahalacensis Rüppel (Crustacea, Conchostraca)
Summary On the antennulae ofLeptestheria dahalacensis (Conchostraca) nearly 600 sensory setae of one type are found. They are gathered in groups of 25–30. The single sensory seta is divided into two parts by the basal bead which is easily visible in the light microscope. The basal bead is the socket of the seta, whose wall is mainly built up by the epicuticle. The terminal pellet closes the tip of the seta. The basal bead is derived from the innermost layer of the epicuticle. 4–10 dendrites each with one receptorcilium innervate the receptor. The receptorcilia stretch through the interior part of the receptor and the basal bead into the exterior part, where they branch. They enter the terminal pellet in a porus, which seems to be a moulting porus. The interior part of the receptor is surrounded by 5 sheath cells. During the premoult it becomes obvious, that the socket of the seta is built by the sheath cell 5, the basal bead by the sheath cell 4 and the shaft by the sheath cell 3. For this the sheath cell 3 is divided into two parts. Between this two parts the newly formed cuticle is invaginated. The sheath cell 2 formes the tip and the sheath cell 1 the cuticular sheath of the new bristle.
  相似文献   

2.
The fine structure of the statocyst sensilla of Neomysis integer was investigated. The statocyst contains about 35 sensilla, which are composed of two bipolar sensory cells, nine enveloping cells, and a seta. The sensory cells consist of an axon, a perikaryon, and a dendrite. The dendrite contains a proximal segment with a ciliary rootlet and at least one basal body, and a distal segment with a ciliary axoneme (9 × 2 + 0) at its base. The distal segment extends along the peripheral wall of the seta and is in close contact with the wall of the hair shaft. The enveloping cells surround the proximal and distal segments of the dendrite. The innermost enveloping cell contains a scolopale rod. It surrounds the receptor lymph cavity and secretes flocculent material into this cavity. From the tip of the cell a dendritic sheath, which encloses the distal segment of the dendrite, emerges. A peculiar feature of the second enveloping cell is the presence of a scolopale-like rod, which is more slender and less pronounced than in the first enveloping cell. The seta consists of three parts: a socket, a tubular midpart, and a gutter-like apical part, the tip of which penetrates into the statolith. The seta shows over its full length a bilaterally symmetrical axis that is coplanar with the plane in which the seta is bent toward the statolith. The structure of the seta and the position of the distal segments provide morphological evidence for directional sensitivity of the sensilla and for the magnitude of shear on the setal wall being an adequate stimulus.  相似文献   

3.
Summary The odontoblasts in the long radular gland of Patella coerulea L. are arranged in a terminal position; therefore newly formed teeth already have an upright position. The long and slender odontoblasts have only one to three lengthy and ramifying apical microvilli. Between these pinnate microvilli a fine filamentous material appears which probably corresponds to chitin microfibrils. Therefore, the pattern of chitin microfibrils seems to depend on the arrangement of odontoblasts' microvilli. For the first time, basal bodies were found in the apical part of odontoblasts which led to the assumption that the radular gland originally might have been a mucous gland, the secretion of which was transported by cilia.  相似文献   

4.
Summary Four envelope cells are responsible for the formation of the basiconical sensilla of Calliphora. They are the thecogen, trichogen, and tormogen cells, and envelope cell 4. In early stages of development the still subepithelial sensory cilia are completely enclosed by the innermost thecogen cell. The first formation movements are initiated by a growth thrust of the hair-forming cell into the exuvial space. The sensory cilia only begin to grow into the hair anlage when the hair-forming cell has almost reached its final length. As soon as growth is completed the trichogen cell, tormogen cell, and envelope cell 4 start to excrete cuticular material. The trichogen cell forms the perforated part of the hair shaft and the stimulus-conducting system consisting of the pore tubules. The tormogen cell is responsible for the excretion of the basal non-perforated hair shaft and sheath cell 4 forms the proximal part of the socket region. The thecogen cell only begin to produce dendritic sheath material when the sensory hair is almost complete.Approximately 7–8 days after pupation the tormogen cell degenerates, having, by this time, produced about two-thirds of the sensilla cuticle. The surrounding envelope cells incorporate cell fragments of the tormogen cell. The trichogen cell continues the secretion where the tormogen cell left off. When the secretion of cuticle is finished the sheath cells begin to withdraw towards the proximal direction and to form microvilli on the apical membrane. The resulting outer receptor lymph space is bordered by envelope cell 4 and the trichogen and thecogen cells. The tormogen cell is absent in the sensilla of the imago.Abbreviations DS dendritic sheath - E4 envelope cell 4 - Ex exuvial space - G glial cell - iD inner dendritic segment - iRL inner receptor lymph space - oRL outer receptor lymph space - oD outer dendritic segment - P pore - PT pore tubules - S sensory cell - T thecogen cell - TO tormogen cell - TR trichogen cell Part 1 of a dissertation accepted by the Faculty of Bio- and Geosciences, University of Karlsruhe  相似文献   

5.
 Lattice organs consist of five pairs of sensory organs situated on the dorsal carapace in cypris larvae of the Crustacea Cirripedia. The lattice organs in cypris larvae of Trypetesa lampas (Acrothoracica) and Peltogaster paguri (Rhizocephala) represent the two main types found in cirripedes, but only minor differences exist at the TEM level. Each lattice organ is innervated by two bipolar, primary receptor cells. The inner dendritic segment of each receptor cell carries two outer dendritic segments. The outer dendritic segments contain modified cilia with a short ciliary segment (9×2+0 structure). Two sheath cells envelop the dendrite except for the distal ends of the outer dendritic segments. This distal end enters a cavity in the carapace cuticle and reaches a terminal pore situated at the far end of the cavity. The cuticle above the cavity is modified. In both species the epicuticle is partly perforated by numerous small pores and the underlying exocuticle is much thinner and less electron dense than the regular exocuticle. Lattice organs very probably have a chemosensory function and are homologous with the sensory dorsal organ of other crustacean taxa. Accepted: 18 August 1998  相似文献   

6.
Summary All cilia emerge from ciliary pits supported along their circumference by 22–24 dense rodlets that are connected by filaments to a surrounding sheath of endoplasmic reticulum. The proximal part of the basal body is provided with two short lateral rootlets and one long terminal rootlet, all associated with microtubules. The lateral rootlets are in turn connected by fine fibrous material to the dense supporting rodlets which follow the contour of the ciliary pit and extend along the ciliary membrane beyond the level of the basal plate where the central pair of microtubules originates. The proximal part of the basal body has fine fibrous connections to the endoplasmic reticulum while its distal portion is surrounded by nine curved sheets. The terminal cell contactions are by belt desmosomes that are accompanied by a bundle of microfilaments which encircle the apical region of the cell and insert at the cell membrane. Tight junctions are lacking. Endocytosis was demonstrated by the uptake of cationized ferritin. The structures associated with the ciliary pits are probably associated with the firm anchorage of the ciliary base since Trichoplax adheres to the substrate as it moves propelled by its ventral cilia. The marginal bundle of microfilaments may be involved in folding of the organism during feeding.  相似文献   

7.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

8.
Two components, a basal cuticle and an epicuticle, make up the cuticle ofA. mucosa. The basal cuticle consists of collagen fibrils, which are arranged in about 20 layers. The orientation of the fibrils changes rectangularly from one layer to the next. Fine filaments interweave the basal cuticle. The epicuticle, which is covered by a layer of electron dense material, is composed of irregularly arranged thin filaments. Branched microvilli of the epidermal cells penetrate the cuticle. Bacteria are found in the basal cuticle. Dorsally each segment has a band of densely packed smooth cilia. Laterally and partly ventrally aggregates of cilia are observed. These cilia exhibit apically artificial swellings. At least six different mucous cells are observed in the epidermis, morphologically distinguishable by the structure of the secretion products. Mucus is secreted via exocytosis through cuticular pores. During this process the mucus might expand. The secreted mucus consists of filamentous subunits.  相似文献   

9.
The ultrastructure of the flame bulbs of the turbellarian Urastoma cyprinae from Mytilus galloprovincialis in the Mediterranean is described. The nucleus of the terminal cell is located some distance basal to the rootlets of the cilia forming the flame; the cytoplasm contains numerous tubules approximately 54–66 nm in diameter, and vesicles. Thick walled, densely packed rod-like structures coil around each other with a tendency towards longitudinal orientation close to the flame. The rod-like structures tightly surround the basal part of the flame and the distal cytoplasmic tube in the apical part of the flame. Some of them, including the inner predominantly longitudinally directed ones, are continuous with the cytoplasm of the terminal cell, others are continuous with the cytoplasm of the distal cytoplasmic tube. Internal leptotriches arise from the cytoplasm of the terminal cell and intrude between the basal parts of the cilia of the flame. The distal cytoplasmic tube possesses a septate junction. The flame bulb of Urastoma differs distinctly from those known from other Platyhelminthes; implications for the phylogeny of Platyhelminthes are discussed.  相似文献   

10.
Bertelli E  Regoli M 《Acta anatomica》1994,151(3):194-197
Primary cilia in the pancreas of the rat were studied by transmission electron microscopy. Their presence is very common, and each ductal cell seems to be provided with a single cilium. The basal body showed anchoring apparatus such as transitional fibers and basal feet. The shaft can show a number of different patterns according to the level of the sections. Proceeding towards the tip, the microtubules decrease in number, although not always in the same way. Near the tip, it is possible to detect patterns, with only 1 microtubule. Three kinds of tips are described. The function of the cilia is discussed.  相似文献   

11.
Phyllodiaptomus wellekensae n. sp. is described from south India. In the female, the genital somite is dilated at the left proximal margin and armed with an extraordinarily large, somewhat curved, laterally-directed spine; the right genital spine is much smaller than the left one. The terminal claw of leg 5 has a secretory pore at its tip and a characteristic conveyor canal on its anterior surface. In the right male P5, the coxal plate is short and unique in shape. The basis is 1.3 times as long as wide, with a long, sinuous, hyaline lamella on its medial margin. The first exopodite segment is short and optuse at its outer distal corner. The second segment is rectangular and has a short, hyaline, spinous projection between the lateral spine and the terminal claw. The left P5 has a large, serrate, hyaline fan between its apical thumb and medial apical seta. P. tunguidus is redescribed based on material newly collected from three localities in China.  相似文献   

12.
Summary A new multicellular glandular sensory organ is described forCatanema sp. (Nematoda, Stilbonematinae). The organs terminate in setae and are distributed in six longitudinal rows along the body. Two types of glandular cells (type A and type B), one monociliary sensory cell and one undifferentiated epidermal cell are combined in the basiepidermal organ. A comparison of epidermal glands as well as sensory organs in Nematoda is made. A causal relationship between the development of such complex, large and numerous glandular sensory organs and the occurrence of species-specific, symbiotic epibacteria inCatanema sp. seems probable, although there is no simple correlation between the distribution of these organs and epibacteria. A mucous cover over the bacterial layer, released by the glandular sensory organs, may create a microenvironment for the interaction between epibionts and host.Abbreviations (used in figures) a amphid - A1–A4 type 1–4 granules of type A gland cell - an annuli - b bacteria - B1–B3 type 1–3 granules of type B gland cell - bl basal lamina - bp basal part of seta - bz basal zone of cuticle - c cuticle - ca canal - cg caudal gland - ci cilium - cz cortical zone of cuticle - d dictyosomes - e epidermis - e co extracellular coat - em extracellular matrix - ep epicuticle - f filaments - gcA type 1 gland cell - gcB type 2 gland cell - i lp inner labial papillae - m mitochondrion - me membranes of type 2 gland cell - mo mouth opening - mz median zone of cuticle - n nucleus - nu nucleolus - p process - pv primary vesicle of type A gland cell - r ribosomes - s seta - sc sensory cell - sp secretory product - tj tight junction - tp terminal part of seta - uc undifferentiated epidermal cell - va vacuoles or vesicles of epidermal cells - ve vesicles of sensory cell  相似文献   

13.
Summary Cilia of the 9+2 pattern are found electron microscopically in nonependymal cells of the habenulae and the interpeduncular nucleus of the tadpole of Rana esculenta at an early stage of development (8 mm length, head to tip of tail). A comparison is made between these and the ependymal and sensory cilia in the same specimens. The cilia project into the neuropil emerging from a perikaryon rich in free ribosomes and displaying a prominent Golgi apparatus. These perikarya contain dense core vesicles. Synapses with vesicles of the clear spherical type have been observed along the ciliary shaft. On a purely morphologic basis the authors hypothesize that these cilia, at least in this early ontogenetic stage, may extend considerably the conducting surface of the cell and represent a sensory structure which could be stimulated by terminal processes belonging to distantly located cells. In addition, they could also be involved in the trophic exchange of material with the adjacent structures.  相似文献   

14.
Summary The basic structure of the terminal sensilla of Locusta migratoria resembles that of Schistocerca gregaria. There are commonly six or ten neurons whose dendrites extend almost to the opening of the peg. Proximally the dendrites are clothed by a neurilemma cell which also encloses a basal cavity through which their ciliary region passes. The tormogen cell encloses the receptor-lymph cavity and actively secretes material into it. The receptor-lymph cavity and the basal cavity are quite separate.The development of new pegs at a moult is described. After apolysis the scolopale extends across the subcuticular space and protects the dendrites, which remain in a functional condition until shortly before ecdysis. As the trichogen cell grows out to form a new peg the tip is surrounded by a mass of electron-dense material, probably derived from the receptorlymph cavity. The function of this material is unknown. Regeneration of the dendrites is considered.The possible mechanism by which the tip of the peg opens and closes is considered and the general structure of the organule is discussed in relation to functioning.  相似文献   

15.
Summary The larval integument of the midge, Chironomus riparius Mg., is unusually thin although it conforms with the normal insect pattern. The cuticle of the post-cephalic segments is about 3 m thick and overlies an epidermis which has an irregular basal plasma membrane resulting in spaces occurring between it and the basement membrane. The ventral tubuli have a similar epidermis but the cuticle is somewhat thinner. The anal papillae have the thinnest cuticular covering with a uniquely folded epicuticle of variable thickness, and their epidermis has the characteristics of a transporting epithelium. No evidence of pore canals could be found in the cuticle of any part except the head capsule which has a remarkably smooth epicuticle and a distinct layer which may represent the exocuticle. There are no spaces between the basement membrane and basal plasma membrane of the epidermis in the head. Ultrastructural evidence would suggest that gaseous exchange can occur across most of the post-cephalic integument.The author is indebted to Mrs. L. Rolph and Mr. R.L. Jones for their technical assistance  相似文献   

16.
Terminal buds on the gill arches of larval Lampetra planeri have been investigated by scanning and transmission electron microscopy. Each terminal bud is composed of two types of elongated cells, which extend from an apical depression to the basal lamina; one type bears a pair of cilia and the other, microvilli. In addition there are peripheral and basal cells. Nerve-fibre profiles are lacking within the terminal bud epithelium and contacts between nerves and ciliated cells are established through holes in the basal lamina. The presence of ciliated receptor cells with such a mode of innervation presents a distinct contrast to the morphology of the taste buds of gnathostome vertebrates.  相似文献   

17.
The morphogenesis of the setae in the statocyst sensilla of Neomysis integer was studied. Immediately before ecdysis, a new seta lies inverted between the enveloping cells. All of the nine enveloping cells, except the first one, secrete a well defined part of the new seta. The second, third, fourth, and fifth have a trichogen function; the sixth has a trichogen-tormogen function; and the seventh, eighth, and ninth enveloping cells have a tormogen function. It could not be established whether the dendritic sheath is replaced at molt. In the second and third enveloping cells, there is a differential secretion of cuticular material forming the wall of the distal part of the seta. As a consequence, this wall is not homogeneous. The possible role of this heterogeneity in the formation of the gutter-like apical part of the seta is discussed. A mechanism is proposed by which the pore develops at the transition between the midpart and the apical gutter-like part. Before ecdysis, the distal segments of the sensory cells are still connected with the wall of the old seta in the same way as during intermolt. No degeneration is apparent in the distal segments during preparation for the molt. These morphological findings suggest that sensitivity of the sensilla must be maintained until the moment of the ecdysis.  相似文献   

18.
The isopod Sphaeroma hookeri and many other isopods and peracarids have a sensory spine with laterally inserting sensory hair, positioned in the apical region of the propodal palm of pereopod 1. This spine is innervated by five to eight sensory cells (each giving rise to one cilium) the dendrites of which can be divided into an inner and outer dendritic segment. The cilia are surrounded by an extracellular, electron-dense dendritic sheath. Thirteen enveloping cells are present. The outer dendritic segment (structure beyond the basal bodies) contains two receptor lymph cavities; the inner one lying within the dendritic sheath is homologous with the inner receptor lymph cavity of insects. Scolopales, or tubular bodies, are lacking; their function is probably accomplished by the dendritic sheath. Apically the sensory hair does not have a pore, and the spine is heavily sclerotized. The inner dendritic segment begins with a basal body from which rootlets of different length and thickness extend into the dendrite. In the latter is an accumulation of vesicles. The dendrites keep close contact with other dendrites and the enveloping cells by desmosomal membrane structures. The possible importance of the sensory spine for phylogenetic studies is discussed.  相似文献   

19.
Summary The early development of taste sensilla has been studied with special emphasis on cilia, dendrite, and pore formation.In the 39-h stage (the first stage investigated) differentiation of sensilla is already under way. The mechanisms of differentiation of dendrites (39–48 h) deviate from the mechanisms described for differentiation of true cilia. In taste hairs the centrioles meet in the tip of the narrowed apical region of the sensory neuron. Together they sink deeper into this region and line up coaxially, thus forming the basal body complex. Thereafter, lateral contacts between this complex and the plasma membrane of the neuron are established. Formation of open connections between the trichogen lumen of the hair and the environment, or the dendrite lumen, was not observed.Electrophysiological data indicate that the sensilla become functional from 3 days before emergence onwards.List of Abbreviations B Basal body complex - bc Basal compartment - bs Basal sheath - bl Basement lamina - D Dendrite(s) - EPC Non-sensillar epithelial cells - ES Ecdysial sheath - GERL Granular endoplasmatic reticulum-lysosomes - HS Hemolymph space - P Protrusions - PRN Prospective receptor neuron - RER Rough endoplasmatic reticulum - RN Receptor neuron - n Neck - THC Thecogen cell - TOC Tormogen cell - TRC Trichogen cell - TRS Trichogen sprout  相似文献   

20.
Summary The protonephridial terminal organ in the nemertean Pantinonemertes californiensis is composed of two cells that are similar in size and shape and are mirror images of each other. Basally in the organ the two cells combine to form a binucleate cytoplasmic mass. Apically they are intimately joined to form a subcylindrical thin-walled weir apparatus; this part is supported by two opposed cytoplasmic columns running the length of the weir region, one originating from each of the two cells, and by a number of regularly spaced circular bars that arise from the two columns. The ciliary flame consists of 94–114 cilia that originate in the bases of the two cells, and it is surrounded by a palisade of incomplete circlets of long, straight microvilli. The convoluted protonephridial tubule is rich in structures that indicate intensive reabsorption from the primary urine. It is argued that the terminal organs in Pantinonemertes and Geonemertes are fundamentally similar and differ only in the amount of microtubules present in the longitudinal supports.Abbreviations BL basal lamina - CF ciliary flame - CT connective tissue - CV coated vesicle - E endocytotic pit - FM filtration membrane - G Golgi complex - LC longitudinal cytoplasmic column - M mitochondrion - MT microtubules - MV microvilli - N nucleus - NPC nucleus of protonephridial capillary cell - PC protonephridial capillary cell - R rootlets - TB transverse bar - TC terminal cell - WE weir, exterior of fenestrated wall - WI weir, interior of same  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号