首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple sorting pathways operate in chloroplasts to localize proteins to the thylakoid membrane. The signal recognition particle (SRP) pathway in chloroplasts employs the function of a signal recognition particle (cpSRP) to target light harvesting chlorophyll-binding protein (LHCP) to the thylakoid membrane. In assays that reconstitute stroma-dependent LHCP integration in vitro, the stroma is replaceable by the addition of GTP, cpSRP, and an SRP receptor homolog, cpFtsY. Still lacking is an understanding of events that take place at the thylakoid membrane including the identification of membrane proteins that may function at the level of cpFtsY binding or LHCP integration. The identification of Oxa1p in mitochondria, an inner membrane translocase component homologous to predicted proteins in bacteria and to the albino3 (ALB3) protein in thylakoids, led us to investigate the potential role of ALB3 in LHCP integration. Antibody raised against a 50-amino acid region of ALB3 (ALB3-50aa) identified a single 45-kDa thylakoid protein. Treatment of thylakoids with antibody to ALB3-50aa inhibited LHCP integration, whereas the same antibody treatment performed in the presence of antigen reversed the inhibition. In contrast, transport by the thylakoid Sec or Delta pH pathways was unaffected. These data support a model whereby a distinct translocase containing ALB3 is used to integrate LHCP into thylakoid membranes.  相似文献   

2.
Filamentous haemagglutinin (FHA) is the major adhesin of Bordetella pertussis, the whooping cough agent. FHA is synthesized as a 367-kDa precursor harbouring a remarkably long signal peptide with an N-terminal extension that is conserved among related virulence proteins. FHA is secreted via the two-partner secretion pathway that involves transport across the outer membrane by a cognate transporter protein. Here we have analyzed the mechanism by which FHA is targeted to, and translocated across, the inner membrane. Studies were performed both in vitro using Escherichia coli inside-out inner membrane vesicles and in vivo by pulse-chase labelling of Bordetella pertussis cells. The data collectively indicate that like classical periplasmic and outer membrane proteins, FHA requires SecA and SecB for its export through the SecYEG translocon in the inner membrane. Although short nascent chains of FHA were found to cross-link to signal recognition particle (SRP), we did not obtain indication for an SRP-dependent, co-translational membrane targeting provoked by the FHA signal sequence. Our results rule out that the extended signal peptide of FHA determines a specific mode of membrane targeting but rather suggest that it might influence the export rate at the inner membrane.  相似文献   

3.
The membrane insertion of the mannitol permease (MtlA protein) of Escherichia coli, a polytopic cytoplasmic membrane protein possessing an uncleaved amphiphilic signal sequence, was studied using a cell-free protein synthesis system. The MtlA protein synthesized in the presence of inside-out cytoplasmic membrane vesicles was shown to insert into the membranes based on the following criteria: (a) co-sedimentation of the majority of the MtlA protein with the vesicles; (b) selective extraction of the membrane-associated MtlA by doxycholate but not by urea treatment; and (c) protease resistance of a defined MtlA fragment observed exclusively in the presence of membranes. Post-translational addition of membrane vesicles allowed membrane association of MtlA but did not allow efficient integration. In cell-free systems having reduced levels of the export factors SecA and SecB and exhibiting defective translocation of preOmpA and preLamB, insertion of the in vitro synthesized MtlA apparently occurred normally. In contrast, when membranes from the secY24ts mutant or trypsin-treated membranes were used, insertion of MtlA was reduced. In vivo experiments monitoring the permease activity of MtlA in the secA and secY mutants supported the conclusions of the in vitro results. Thus, the insertion of MtlA is essentially SecA- and SecB-independent but may be dependent on SecY and/or an as yet unidentified membrane protein. The requirements for the insertion of the mannitol permease are therefore clearly different from those for the translocation of most proteins having a cleavable hydrophobic signal sequence.  相似文献   

4.
The insertion of a protein into a lipid bilayer usually involves a short signal sequence and can occur either during or after translation. A light-harvesting chlorophyll a/b-binding protein (LHCP) is synthesized in the cytoplasm of plant cells as a precursor and is post-translationally imported into chloroplasts where it subsequently inserts into the thylakoid membrane. Only mature LHCP is required for insertion into the thylakoid. To define which sequences of the mature protein are necessary and sufficient for thylakoid integration, fusion and deletion proteins and proteins with internal rearrangements were synthesized and incubated with isolated thylakoids and stroma. No evidence is found for the existence of a short signal sequence within LHCP, and, with the exception of the amino terminus and a short lumenal loop, the entire mature protein with consecutively ordered alpha-helices is required for insertion into thylakoid membranes. The addition of positive charges into stromal but not lumenal segments permits the insertion of mutant LHCPs into isolated thylakoids. Replacement of the LHCP transit peptide with the transit peptide from plastocyanin has no effect on LHCP insertion and does not restore insertion of the lumenal charge addition mutants.  相似文献   

5.
The calpain-binding components on the plasma membrane were characterized using calpain I. 125I-labeled calpain was bound to inside-out membrane vesicles from human erythrocyte in a Ca2(+)-dependent manner, but not to right-side-out membrane vesicles. The maximum binding was observed at more than 5 microM Ca2+. The binding amount of calpain to the inside-out membrane vesicles was decreased when the vesicles were pretreated with 100 micrograms/ml of trypsin, chymotrypsin, elastase, or pronase P for 30 min at 37 degrees C, although the binding to the vesicles pretreated with 200 micrograms/ml of phospholipase A2 or C was not affected. Calpain-binding proteins in the membrane were analyzed by using a modified immunoblotting for calpain. Immunostained bands of 240, 220, 89, 72, 52, and 36 kDa were detected as the calpain-binding proteins in the native membrane. All of these bands had disappeared in trypsin-treated membrane. The disappearance of bands was dose-dependent with respect to trypsin and paralleled the reduction of binding amount of calpain to the trypsinized membrane. In calpain-treated membrane, the 240 and 36 kDa bands were retained in the blotting, though the other bands disappeared dose-dependently with respect to calpain. These results suggested that the significant component in the inner surface of plasma membrane for binding of calpain was proteinaceous and the calpain-binding proteins could be classified into two species, i.e. substrates of calpain (220, 89, 72, and 52 kDa protein) and non-substrates (240 and 36 kDa protein).  相似文献   

6.
In order to determine if the cognate transit peptide of the light-harvesting chlorophyll a/b-binding protein (LHCP) is essential for LHCP import into the chloroplast and proper localization to the thylakoids, it was replaced with the transit peptide of the small subunit (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase, a stromal protein. Wheat LHCP and S genes were fused to make a chimeric gene coding for the hybrid precursor, which was synthesized in vitro and incubated with purified pea chloroplasts. My results show that LHCP is translocated into chloroplasts by the S transit peptide. The hybrid precursor was processed; and most importantly, mature LHCP did not remain in the stroma, but was inserted into thylakoid membranes, where it normally functions. Density gradient centrifugation showed no LHCP in the envelope fraction. Hence, the transit peptide of LHCP is not required for intraorganellar routing, and LHCP itself contains an internal signal for localization to the correct membrane compartment.  相似文献   

7.
In order to explore the binding sites for calcium-activated neutral protease (CANP) with high calcium sensitivity (muCANP) on the inner surface of human erythrocyte membranes, we analyzed the binding of muCANP to two kinds of membranes modified by treatment with phospholipase C or Triton X-100. Binding analyses were performed using an immunoblot technique. The amount of muCANP bound to phospholipase C-treated inside-out vesicles was essentially the same as that bound to untreated inside-out vesicles. It was also observed that muCANP binds to Triton X-100-treated membranes, in which most of the integral proteins and glycerophospholipids are removed while the lining proteins remain intact. In both types of modified membrane, the bound muCANP was rapdily converted to an active form by autolysis at physiological free Ca2+ concentrations. These results indicate that the binding sites for muCANP on the inner surface of erythrocyte membranes consist of components other than membrane phospholipids. In addition, it is suggested that one of the binding sites for muCANP is some lining protein.  相似文献   

8.
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.  相似文献   

9.
The signal peptides of pre-aldehyde dehydrogenase (22-mer) and pre-ornithine transcarbamylase (27-mer) were chemically synthesized and their imports into rat liver mitochondria were studied. Both signal peptides were imported rapidly (within 2 min) in the absence of a membrane potential, exogenous ATP, or rabbit reticulocyte lysate. Signal peptides also were imported into mitochondria treated with a low concentration of trypsin which removed the outer membrane proteins. It was concluded that the chemically synthesized signal peptide could be imported differently than the precursor proteins. The imported signal peptide were found to be associated with both outer and inner membranes. Pulse-chase experiments showed that the import was unidirectional and that the signal peptides associated with inner membranes increased during the chase time. The signal peptides inhibited import of precursor proteins to different extents. Association of signal peptides with inner membrane near or at translocator sites might result in inhibition of precursor import.  相似文献   

10.
d-β-Hydroxybutyrate dehydrogenase of beef heart mitochondria is a lipid-requiring enzyme, bound to the inner membrane. The orientation of this enzyme in the membrane has been studied by comparing the characteristics of the enzyme in mitochondria and ‘inside-out’ submitochondrial vesicles. We observe that the enzymic activity is (1) latent in intact mitochondria; (2) relatively stable to trypsin digestion in mitochondria but rapidly inactivated in submitochondrial vesicles by this treatment; and (3) released more rapidly from submitochondrial vesicles by phospholipase A2 digestion than from mitochondria. Conclusive evidence that d-β-hydroxybutyrate dehydrogenase is localized on the matrix face of the mitochondrial inner membrane is provided by the correlation that the enzyme is released from submitochondrial vesicles before the membrane becomes leaky to cytochrome c. The arrangement of d-β-hydroxybutyrate dehydrogenase in the membrane is discussed within a generalized classification of the orientation of proteins in membranes. The evidence indicates that d-β-hydroxybutyrate dehydrogenase is an amphipathic molecule and as such is inlaid in the membrane, i.e. the enzyme is partially inserted into the hydrophobic milieu of the membrane, with the polar, functional end extending into the aqueous milieu.  相似文献   

11.
Preparative free-flow electrophoresis and aqueous two-phase polymer partition were used to obtain a plasma membrane-enriched fraction of adipocytes isolated from epididymal fat pads of the rat together with a fraction enriched in small vesicles with plasma membrane characteristics (thick membranes, clear dark-light-dark pattern). The electrophoretic mobility of the small vesicles was much less than that of the plasma membrane consistent with an inside-out orientation whereby charged molecules normally directed to the cell surface were on the inside. When plasma membranes and the small vesicle fraction were isolated from fat cells treated or not treated with 100 μU/ml insulin and the resident proteins of the two fractions analyzed by SDS-PAGE, the two fractions exhibited characteristics responses involving specific protein bands. Insulin treatment for 2 min resulted in the loss of a 90 kDa band from the plasma membrane. At the same time, a ca. 55-kDa peptide band that was enhanced in the plasma membrane was lost from the small vesicle fraction. The latter corresponded on Western blots to the GLUT-4 glucose transporter. Thus, we suggest that the small vesicle fraction with characteristics of inside-out plasma membrane vesicles may represent the internal vesicular pool of plasma membrane subject to modulation by treatment of adipocytes with insulin.  相似文献   

12.
The hemoglobin binding sites on the inner surface of the erythrocyte membrane were identified by measuring the fraction of hemoglobin released following selective proteolytic or lipolytic enzyme digestion. In addition, binding stoichiometry to and fractional hemoglobin release from inside-out vesicle preparations of human and rabbit membranes were compared since rabbit membranes differ significantly from human membranes only in that they lack glycophorin. Our results show that rabbit inside-out vesicles bind about 65% less human or rabbit hemoglobin under conditions of optimal and stoichiometric binding, despite being otherwise similar in composition. We suggest that this difference is either directly or indirectly due to the absence of glycophorin in rabbit membranes. Further supportive evidence includes demonstrating (a) that neuraminidase treatment of human membranes did not affect hemoglobin binding and (b) that reconstitution of isolated glycophorin into phospholipid vesicles increased the hemoglobin binding capacity in a manner proportional to the fraction of glycophorin molecules oriented with their cytoplasmic sides exposed to the exterior of the vesicle. Proteolysis of human inside-out vesicles either before or after addition of hemoglobin reduced the binding capacity by about 25%. This is consistent with the known proportion of total hemoglobin binding sites involving band 3 protein and the selective lability of the cytoplasmic aspect of band 3 protein to proteolysis. Phospholipid involvement in hemoglobin binding was determined using various phospholipase C preparations which differ in their reactivity profiles. Approximately 38% of the bound hemoglobin was released upon cleavage of phospholipid headgroups. These results suggest that the predominant sites of binding for hemoglobin on the inner surface of the red cell membrane are the two major integral membrane glycoproteins.  相似文献   

13.
To obtain insight into the mechanism of precursor protein translocation across membranes, the effect of synthetic signal peptides and other relevant (poly)peptides on in vitro PhoE translocation was studied. The PhoE signal peptide, associated with inner membrane vesicles, caused a concentration-dependent inhibition of PhoE translocation, as a result of a specific interaction with the membrane. Using a PhoE signal peptide analog and PhoE signal peptide fragments, it was demonstrated that the hydrophobic part of the peptide caused the inhibitory effect, while the basic amino terminus is most likely important for an optimal interaction with the membrane. A quantitative analysis of our data and the known preferential interaction of synthetic signal peptides with acidic phospholipids in model membranes strongly suggest the involvement of negatively charged phospholipids in the inhibitory interaction of the synthetic PhoE signal peptide with the inner membrane. The important role of acidic phospholipids in protein translocation was further confirmed by the observation that other (poly)peptides, known to have both a high affinity for acidic lipids and hydrophobic interactions with model membranes, also caused strong inhibition of PhoE translocation. The implication of these results with respect to the role of signal peptides in protein translocation is indicated.  相似文献   

14.
Recent advances have led to considerable convergence in ideas of the way topogenic sequences act to translocate proteins across various intracellular membranes (Table 2). Whereas co-translational translocation and processing were previously considered the norm at the endoplasmic reticulum membrane, several instances of post-translational translocation into endoplasmic reticulum microsomes in vitro have now been described. However, it must be noted that post-translational translocation in vitro is much less efficient than when endoplasmic reticulum membranes are present during translation, and it is possible that in the intact cell translocation occurs during translation. Movement of proteins into chloroplasts and mitochondria occurs after translation. When translocation is post-translational, proteins may perhaps traverse the membrane as folded domains, and the conformational effects of topogenic sequences on these domains may be as envisaged in Wickner's 'membrane-trigger hypothesis'. Both signal and transit sequences possess amphipathic structures which are capable of interacting with phospholipid bilayers, and these interactions may disturb the bilayer sufficiently to allow entry of the following domains of protein. There is increasing evidence that GTP is required to bind ribosomes and their associated nascent chains to the endoplasmic reticulum membrane. Precisely how the cell's energy is applied to achieve translocation is not clear, but one possibility at the endoplasmic reticulum is that a GTP-hydrolysing transducing mechanism may exist to couple signal sequence receptor binding to movement of the nascent chain across the membrane. Electrochemical gradients are required for protein movement to the mitochondrial inner membrane and across the bacterial inner membrane. Cytoplasmic factors such as SRP, the secA gene product or a 40 kDa protein (for mitochondrial precursors) may act by binding to topogenic sequences and preventing precursor proteins as they are translated from folding into forms which cannot be translocated. Specificity in the cell may be achieved both by targetting interactions between these cytoplasmic factors and their receptors located in target membranes, and also by specific binding of the topogenic sequences to specific proteins integrated into the target membranes. Possible candidates for the latter are the protein of microsomal membranes that reacts with a photoreactive signal peptide to give a 45 kDa complex (Fig. 1), the secY gene product of the bacterial inner membrane, and receptors on the outer membranes of chloroplasts and mitochondria. Whether these aid translocation as well as recognition is not clear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

16.
The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. GTP, chloroplast SRP (cpSRP), and chloroplast FtsY (cpFtsY) are required for LHCP integration into thylakoid membranes. Here, we report the reconstitution of the LHCP integration reaction with purified recombinant proteins and salt-washed thylakoids. Our data demonstrate that cpSRP and cpFtsY are the only soluble protein components required for LHCP integration. In addition, our studies reveal that ATP, though not absolutely required, remarkably stimulates LHCP integration into salt-washed thylakoids. ATP stimulates LHCP integration by a mechanism independent of the thylakoidal pH gradient (DeltapH) and exerts no detectable effect on the formation of the soluble LHCP-cpSRP-targeting complex. Taken together, our results indicate the participation of a thylakoid ATP-binding protein in LHCP integration.  相似文献   

17.
Human erythrocyte UDPgalactose : 2-acetamido-2-deoxy-alpha-D-galactopyranosylpeptide galactose beta(1 lead to 3) transferase (Galactosyltransferase) has been characterized in terms of detergent and metal ion requirements. Michaelis constants for donor and acceptor substrates, inhibition constant for N-acetylgalactosamine, pH optimum and ionic strength effects. The assay thus optimized permits initial velocity measurements. Galactosyltransferase was shown to be membrane-bound by demonstrating its association with erythrocyte ghosts after high and low ionic strength treatments to remove weakly-associated proteins. In the absence of detergents, no activity was detectable in sealed ghosts and inside-out vesicles derived from erythrocyte membranes. Enzyme activation by detergents paralleled solubilization of membrane proteins. Both latency and solubilization studies indicated a substrate inaccessible active site for the enzyme in situ in the membrane. Galactosyltransferase activity in resealed ghosts, leaky ghosts and inside-out vesicles was resistant to the action of trypsin, chymotrypsin or pronase applied as single agents. A mixture of these proteases, however, strongly reduced the enzyme activity in inside-out vesicles and leaky ghosts, indicating a cytosolic orientation for the active site of the galactosyltransferase.  相似文献   

18.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

19.
Chloroplast signal recognition particle (cpSRP) is a novel type of SRP that contains a homolog of SRP54 and a 43-kDa subunit absent from all cytoplasmic SRPs but lacks RNA. It is also distinctive in its ability to post-translationally interact with light-harvesting chlorophyll proteins (LHCP), hydrophobic proteins synthesized in the cytoplasm and targeted to the thylakoid via the stroma. LHCP integration into thylakoid membranes requires the two subunits of cpSRP, cpFtsY, GTP, and the membrane protein ALB3. It had previously been shown that the L18 domain, an 18-amino acid peptide between the second and third transmembrane domains, and a hydrophobic domain are required for interaction with cpSRP. In the present study we used a pull-down assay, with cpSRP43 or cpSRP54 fused to glutathione-transferase, to study interactions between cpSRP43, cpSRP54, LHCP, and cpFtsY. cpFtsY was not observed to form significant interactions with any of the proteins even in the presence of nonhydrolyzable GTP analogs. Our data indicate that cpSRP43 binds to the L18 domain, that cpSRP54 binds to the hydrophobic domain, and that LHCP and cpSRP54 independently bind to cpSRP43. These data confirm that the novel post-translational interaction between LHCP and cpSRP is mediated through binding to cpSRP43.  相似文献   

20.
Kohorn BD 《Plant physiology》1990,93(1):339-342
Eukaryotic light harvesting proteins (LHCPs) bind pigments and assemble into complexes (LHCs) that channel light energy into photosynthetic reaction centers. The structures of several prokaryotic LHCPs are known and histidines are important for the binding of the associated pigments. It has been difficult to predict how the eukaryotic LHCPs associate with pigments as the structure of the major LHCP of photosystem II is not yet known. While each LHCPII binds approximately 13 chlorophylls the protein contains only three histidines, one in each putative transmembrane helix. Experiments that use isolated pea (Pisum sativum L.) chloroplasts and mutant LHCPII synthesized in vitro show that the substitution of either an alanine or an arginine for each histidine residue inhibits some aspect of LHCII assembly. The histidine of the first membrane helix, but not the second or third, may be involved in the transport across the chloroplast envelope. No histidine alone is essential for the insertion of LHCP into thylakoid membranes, yet arginine substitutions are more inhibitory than those of alanine. The histidine replacements have their most pronounced effect on the assembly of LHCP into LHCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号