首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
3.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for potyvirus infection. Here, we report the identification of two DEAD-box RNA helicase-like proteins, PpDDXL and AtRH8 from peach (Prunus persica) and Arabidopsis (Arabidopsis thaliana), respectively, both interacting with VPg. We show that AtRH8 is dispensable for plant growth and development but necessary for potyvirus infection. In potyvirus-infected Nicotiana benthamiana leaf tissues, AtRH8 colocalizes with the chloroplast-bound virus accumulation vesicles, suggesting a possible role of AtRH8 in viral genome translation and replication. Deletion analyses of AtRH8 have identified the VPg-binding region. Comparison of this region and the corresponding region of PpDDXL suggests that they are highly conserved and share the same secondary structure. Moreover, overexpression of the VPg-binding region from either AtRH8 or PpDDXL suppresses potyvirus accumulation in infected N. benthamiana leaf tissues. Taken together, these data demonstrate that AtRH8, interacting with VPg, is a host factor required for the potyvirus infection process and that both AtRH8 and PpDDXL may be manipulated for the development of genetic resistance against potyvirus infections.Plant viruses are obligate intracellular parasites that infect many agriculturally important crops and cause severe losses each year. One of the common characteristics of plant viruses is their relatively small genome that encodes a limited number of viral proteins, making them dependent on host factors to fulfill their infection cycles (Maule et al., 2002; Whitham and Wang, 2004; Nelson and Citovsky, 2005; Decroocq et al., 2006). In order to establish a successful infection, the invading virus must recruit an array of host proteins (host factors) to translate and replicate its genome and to move locally from cell to cell via the plasmodesmata and systemically via the vascular system. It has been suggested that down-regulation or mutation of some of the required host factors may result in recessively inherited resistance to viruses (Kang et al., 2005b).Potyviruses, belonging to the genus Potyvirus in the family Potyviradae, constitute the largest group of plant viruses (Rajamäki et al., 2004). Potyviruses have a single positive-strand RNA genome approximately 10 kb in length, with a viral genome-linked protein (VPg) covalently attached to the 5′ end and a poly(A) tail at the 3′ end (Urcuqui-Inchima et al., 2001; Rajamäki et al., 2004). The viral genome contains a single open reading frame (ORF) that translates into a polypeptide with a molecular mass of approximately 350 kD, which is cleaved into 10 mature proteins by viral proteases (Urcuqui-Inchima et al., 2001). Recently, a novel viral protein resulting from a frameshift in the P3 cistron has been reported (Chung et al., 2008). Of the 11 viral proteins, VPg is a multifunctional protein and the only other viral protein present in the viral particles (virions) besides the coat protein and the cylindrical inclusion protein (CI; Oruetxebarria et al., 2001; Puustinen et al., 2002; Gabrenaite-Verkhovskaya et al., 2008). The nonstructural protein is linked to the viral RNA by a phosphodiester bond between the 5′ terminal uridine residue of the RNA and the O4-hydroxyl group of amino acid Tyr (Murphy et al., 1996; Oruetxebarria et al., 2001; Puustinen et al., 2002). Mutation of the Tyr residue that links VPg to the viral RNA abolishes virus infectivity completely (Murphy et al., 1996). In infected cells, VPg and its precursor NIa are present in the nucleus and in the membrane-associated virus replication vesicles in the cytoplasm (Carrington et al., 1993; Rajamäki and Valkonen, 2003; Cotton et al., 2009). As a component of the replication complex, VPg may serve as a primer for viral RNA replication (Puustinen and Mäkinen, 2004) and as an analog of the m7G cap of mRNAs for the viral genome to recruit the translation complex for translation (Michon et al., 2006; Beauchemin et al., 2007; Khan et al., 2008). Furthermore, VPg has been suggested to be an avirulence factor for recessive resistance genes in diverse plant species (Moury et al., 2004; Kang et al., 2005b; Bruun-Rasmussen et al., 2007). Thus, VPg plays a pivotal role in the virus infection process. The molecular identification of VPg-interacting host proteins and the subsequent functional characterization of such interactions may advance knowledge of the intricate virus replication mechanisms and help develop novel antiviral strategies.Previous studies have shown that VPg and its precursor NIa interact with several host proteins, including three essential components of the host protein translation apparatus (Thivierge et al., 2008). The first protein is the cellular translation initiation factor eIF4E or its isoform eIF(iso)4E, identified through a yeast two-hybrid screen using VPg as a bait (Wittmann et al., 1997; Schaad et al., 2000). The protein complex of VPg and eIF4E is an essential component for virus infectivity (Robaglia and Caranta, 2006). Mutations and knockout of eIF4E or eIF(iso)4E confer resistance to infection (Lellis et al., 2002; Ruffel et al., 2002; Nicaise et al., 2003; Gao et al., 2004; Kang et al., 2005a; Ruffel et al., 2005; Decroocq et al., 2006; Bruun-Rasmussen et al., 2007). It is well known that potyviruses recruit selectively one of the eIF4E isoforms, depending on specific virus-host combinations (German-Retana et al., 2008). For instance, in Arabidopsis (Arabidopsis thaliana), eIF(iso)4E is required for infection by Turnip mosaic virus (TuMV), Plum pox virus (PPV), and Lettuce mosaic virus, while eIF4E is indispensable for infection by Clover yellow vein virus (Duprat et al., 2002; Lellis et al., 2002; Sato et al., 2005; Decroocq et al., 2006). The second cellular protein interacting with VPg is another translation initiation factor, eIF4G. Analysis of Arabidopsis knockout mutants for eIF4G or its isomers eIF(iso)4G1 and eIF(iso)4G2 has yielded results supporting the idea that the recruitment of eIF4G for potyvirus infection is also isoform dependent (Nicaise et al., 2007). Recently, poly(A)-binding protein (PABP), the translation initiation factor that bridges the 5′ and 3′ termini of the mRNA into proximity, has been proposed to be essential for efficient multiplication of TuMV (Dufresne et al., 2008). PABP was previously documented to interact with NIa, a VPg precursor containing both VPg and the proteinase NIa-Pro (Léonard et al., 2004). As the translation factors eIF(iso)4E and PABP have been found to be internalized in virus-induced vesicles, it has been suggested that the interactions between VPg and these translation factors are crucial for viral RNA translation and/or replication (Beauchemin and Laliberté, 2007; Beauchemin et al., 2007; Cotton et al., 2009). Besides these three translation factors, a Cys-rich plant protein, potyvirus VPg-interaction protein, was also found to associate with VPg (Dunoyer et al., 2004). This plant-specific VPg-interacting host protein contains a PHD finger domain and acts as an ancillary factor to support potyvirus infection and movement (Dunoyer et al., 2004).In this study, we describe the identification of an Arabidopsis DEAD-box RNA helicase (DDX), AtRH8, and a peach (Prunus persica) DDX-like protein, PpDDXL, both interacting with the potyviral VPg protein. Using the atrh8 mutant, we demonstrate that AtRH8 is not required for plant growth and development in Arabidopsis but is necessary for infection by two plant potyviruses, PPV and TuMV. Furthermore, we present evidence that AtRH8 colocalizes with the virus accumulation complex in potyvirus-infected leaf tissues, which reveals a possible role of AtRH8 in virus infection. Finally, we have identified the VPg-binding region (VPg-BR) of AtRH8 and PpDDX and show that overexpression of the VPg-BR either from AtRH8 or PpDDXL suppresses virus accumulation.  相似文献   

12.
13.
14.
Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-β-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.Sugars are main energy sources for generating ATP, major precursors to various storage carbohydrates as well as key signaling molecules important for normal growth in higher plants (Rolland et al., 2006). Depending on the metabolic demand, sugars are translocated over long distances or stored locally. SWEET (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS) and SUC/SUT (for Sucrose transporter/Sugar transporter)-type transporters are responsible for transfer of Suc from the phloem parenchyma into the sieve element companion cell complex for long-distance translocation (Riesmeier et al., 1992; Sauer, 2007; Kühn and Grof, 2010; Chen et al., 2012). Suc or hexoses derived from Suc hydrolysis in the cell wall are then taken up into sink cells by SUT (Braun and Slewinski, 2009) or monosaccharide transporters, such as sugar transporter1 (Sauer et al., 1990; Pego and Smeekens, 2000; Sherson et al., 2003). Alternatively, sugars are thought to move between cells via plasmodesmata (Voitsekhovskaja et al., 2006; Ayre, 2011). Major sugar storage pools within plant cells are soluble sugars stored in the vacuole, starch in plastids, and lipids in oil bodies.Vacuoles, which can account for approximately 90% of the cell volume (Winter et al., 1993), play central roles in temporary and long-term storage of soluble sugars (Martinoia et al., 2007; Etxeberria et al., 2012). Some agriculturally important crops such as sugar beet (Beta vulgaris; Leigh, 1984; Getz and Klein, 1995), citrus (Citrus spp.; Echeverria and Valich, 1988), sugarcane (Saccharum officinarum; Thom et al., 1982), and carrot (Daucus carota; Keller, 1988) can store considerable amounts (>10% of plant dry weight) of Suc, Glc, or Fru in vacuoles of the storage parenchyma. Due to a high capacity of vacuoles for storing sugars, vacuolar sugars can serve as an important carbohydrate source during energy starvation, e.g. after starch has been exhausted (Echeverria and Valich, 1988), as well as for the production of other compounds (e.g. osmoprotectants). Sugars are known to regulate photosynthesis; therefore, the release of sugars from vacuoles could be important for modulating photosynthesis (Kaiser and Heber, 1984). Moreover, vacuole-derived sugars are commercially used to produce biofuels, such as ethanol, from sugarcane. Knowledge of the key transporters involved in sugar exchange between the vacuole and cytoplasm is thus relevant in the context of bioenergy (Grennan and Gragg, 2009).To facilitate the exchange of sugars across the tonoplast, plant vacuoles are equipped with a multitude of transporters (Neuhaus, 2007; Etxeberria et al., 2012; Martinoia et al., 2012) comprising both facilitated diffusion and active transport systems of vacuolar sugars (Martinoia et al., 2000). Typically, Suc is actively imported into vacuoles by tonoplast monosaccharide transporter (AtTMT1/AtTMT2; Schulz et al., 2011) and exported by the SUT4 family (AtSUC4, OsSUT2; Eom et al., 2011; Payyavula et al., 2011; Schulz et al., 2011). Two H+-dependent sugar antiporters, the vacuolar Glc transporter (AtVGT1; Aluri and Büttner, 2007) and AtTMT1 (Wormit et al., 2006), mediate Glc uptake across the tonoplast to promote carbohydrate accumulation in Arabidopsis (Arabidopsis thaliana). The Early Responsive to Dehydration-Like6 protein has been shown to export vacuolar Glc into the cytosol (Poschet et al., 2011), likely via an energy-independent diffusion mechanism (Yamada et al., 2010). Defects in these vacuolar sugar transporters alter carbohydrate partitioning and allocation and inhibit plant growth and seed yield (Aluri and Büttner, 2007; Wingenter et al., 2010; Eom et al., 2011; Poschet et al., 2011).In contrast to numerous studies on vacuolar transport of Suc and Glc, limited efforts have been devoted to the molecular mechanism of vacuolar Fru transport even though Fru is predominantly located in vacuoles (Martinoia et al., 1987; Voitsekhovskaja et al., 2006; Tohge et al., 2011). Vacuolar Fru is important for the regulation of turgor pressure (Pontis, 1989), antioxidative defense (Bogdanović et al., 2008), and signal transduction during early seedling development (Cho and Yoo, 2011; Li et al., 2011). Thus, control of Fru transport across the tonoplast is thought to be important for plant growth and development. One vacuolar Glc transporter from the Arabidopsis monosaccharide transporter family, VGT1, has been reported to mediate low-affinity Fru uptake when expressed in yeast (Saccharomyces cerevisiae) vacuoles (Aluri and Büttner, 2007). Yet, the high vacuolar uptake activity to Fru intimates the existence of additional high-capacity Fru-specific vacuolar transporters (Thom et al., 1982). Recently, quantitative mapping of a quantitative trait locus for Fru content of leaves led to the identification of the Fru-specific vacuolar transporter SWEET17 (Chardon et al., 2013).SWEET17 belongs to the recently identified SWEET (PFAM:PF03083) super family, which contains 17 members in Arabidopsis and 21 in rice (Oryza sativa; Chen et al., 2010; Frommer et al., 2013; Xuan et al., 2013). Based on homology with 27% to 80% amino acid identity, plant SWEET proteins were grouped into four subclades (Chen et al., 2010). Analysis of GFP fusions indicated that most SWEET transporters are plasma membrane localized. Transport assays using radiotracers in Xenopus laevis oocytes and sugar nanosensors in mammalian cells showed that they function as largely pH-independent low-affinity uniporters with both uptake and efflux activity (Chen et al., 2010, 2012). In particular, clade I and II SWEETs transport monosaccharides and clade III SWEETs transport disaccharides, mainly Suc (Chen et al., 2010, 2012). Mutant phenotypes and developmental expression of several SWEET transporters support important roles in sugar translocation between organs. The clade III SWEETs, in particular SWEET11 and 12, mediate the key step of Suc efflux from phloem parenchyma cells for phloem translocation (Chen et al., 2012). Moreover, SWEETs are coopted by pathogens, likely to provide energy resources and carbon at the site of infection (Chen et al., 2010). Mutations of SWEET8/Ruptured pollen grain1 in Arabidopsis, and RNA inhibition of OsSWEET11 (also called Os8N3 or Xa13) in rice, and petunia (Petunia hybrida) NEC1 resulted in male sterility (Ge et al., 2001; Yang et al., 2006; Guan et al., 2008), possibly caused by inhibiting the Glc supply to developing pollen (Guan et al., 2008). Interestingly, two members, SWEET16 and SWEET17, of the family localize to the tonoplast (Chardon et al., 2013; Klemens et al., 2013). Allelic variation or mutations that affect SWEET17 expression caused Fru accumulation in Arabidopsis leaves, indicating that it plays a key role in exporting Fru from leaf vacuoles (Chardon et al., 2013). A more recent study demonstrated that SWEET16 also functions as a vacuolar sugar transporter (Klemens et al., 2013). Surprisingly, however, SWEET17 expression in mature leaves was comparatively low (Chardon et al., 2013), which leads us to ask whether SWEET17 could mainly function in other tissues under specific developmental or environmental conditions. Although Arabidopsis SWEET17 has been shown to transport Fru in a heterologous system where it accumulated in part at the plasma membrane (Chardon et al., 2013), the biochemical properties of SWEET17 were still elusive. SWEET16 and SWEET17 from Arabidopsis belong to the clade IV SWEETs. Whether clade IV proteins both transport vacuolar sugars in planta deserves further studies.Here, we used GUS/GFP fusions to reveal the root-dominant expression and vacuolar localization of the SWEET17 protein in vivo and its regulation by Fru levels. Phenotypes of mutants and overexpressors were consistent with a role of SWEET17 in bidirectional Fru transport across root vacuoles. The uniport feature of SWEET17 transport was further confirmed using isolated mesophyll vacuoles. Similarly, SWEET16 is also shown to function in vacuolar sugar transport in roots. Our work, performed in parallel to the two other studies (Chardon et al., 2013; Klemens et al., 2013), provides direct evidence for Fru uniport by SWEET17 and presents functional analyses to uncover important roles of these vacuolar transporters in maintaining intracellular Fru homeostasis in roots.  相似文献   

15.
16.
17.
Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C (FLC). FLC and other genes of the vernalization pathway vary extensively among natural populations and are thus candidates for the adaptation of flowering time to environmental gradients such as altitude. We used 15 natural Arabidopsis (Arabidopsis thaliana) genotypes originating from an altitudinal gradient (800–2,700 m above sea level) in the Swiss Alps to test whether flowering time correlated with altitude under different vernalization scenarios. Additionally, we measured the expression of 12 genes of the vernalization pathway and its downstream targets. Flowering time correlated with altitude in a nonlinear manner for vernalized plants. Flowering time could be explained by the expression and regulation of the vernalization pathway, most notably by AGAMOUS LIKE19 (AGL19), FLOWERING LOCUS T (FT), and FLC. The expression of AGL19, FT, and VERNALIZATION INSENSITIVE3 was associated with altitude, and the regulation of MADS AFFECTING FLOWERING2 (MAF2) and MAF3 differed between low- and high-altitude genotypes. In conclusion, we found clinal variation across an altitudinal gradient both in flowering time and the expression and regulation of genes in the flowering time control network, often independent of FLC, suggesting that the timing of flowering may contribute to altitudinal adaptation.Environmental gradients, such as temperature or water availability, provide an ideal setting to study how species adapt to contrasting environmental scenarios (Reich et al., 2003; Keller et al., 2013). Many studies have shown that phenotypic plant traits such as leaf number, allocation to reproductive biomass, and height change along environmental gradients (Etterson, 2004; Leger and Rice, 2007; Fischer et al., 2011), and some studies could correlate environmental clines to changes in allelic frequencies at specific candidate genes (Manel et al., 2010; Poncet et al., 2010; Fischer et al., 2013).Although allelic variation at genes with major effects may explain variation in some phenotypes, fine-tuning of other quantitative traits along an environmental gradient may require an adjustment of larger regulatory networks (Whitehead and Crawford, 2006; Hodgins-Davis and Townsend, 2009; Hodgins et al., 2013). In Arabidopsis (Arabidopsis thaliana), numerous genetic pathways have been studied extensively, mainly using laboratory accessions (Shinozaki and Yamaguchi-Shinozaki, 2007; Wellmer and Riechmann, 2010; Ó’Maoiléidigh et al., 2014). However, how consistently such pathways are expressed in natural populations, and how they respond to different environmental conditions, often remains unclear. Studying the expression of genetic pathways in natural genotypes originating from an environmental cline under a variety of climatic scenarios provides an ideal approach to understanding how plants can adapt to contrasting environments along a climatic gradient.Across altitudes, environmental gradients are particularly steep: climatic conditions, including temperature, solar radiation, and precipitation, may change dramatically on a small geographic scale (Körner, 2007), while daylength and other factors remain constant. Many phenotypic traits, such as height, total seed weight, leaf size, and allocation to vegetative reproduction, have been found to change along altitudinal gradients in plants (Byars et al., 2007; Gonzalo-Turpin and Hazard, 2009; Fischer et al., 2011). Among these, the timing of flowering (i.e. the transition from vegetative growth to the reproductive phase) is a key developmental phase transition in seasonal alpine environments, as its accuracy is crucial for reproductive success: too-early flowering increases the risk of encountering detrimental frost (Kollas et al., 2013), whereas time for seed maturation may run out if flowering starts too late (Inouye and Wielgolaski, 2003; Chuine, 2010). These contrasting selective pressures may change along an altitudinal gradient, where the vegetation period becomes shorter with increasing altitude.In Arabidopsis, an annual weed native to Eurasia and northern Africa, two different life cycles have been described (Koornneef et al., 2004; Alonso-Blanco et al., 2009): summer annuals germinate and flower within one growing season and do not require winter to initiate flowering; winter annuals germinate usually in autumn, overwinter as vegetative rosettes, and flower in the following spring. Accessions expressing a winter-annual life cycle need vernalization (a prolonged cold period) in order to initiate flowering; otherwise, they remain in a vegetative rosette stage for an extended period of time.On the molecular level, the transition to flowering is among the best-studied processes in plants (Wellmer and Riechmann, 2010; Andrés and Coupland, 2012), and in Arabidopsis, several genetic pathways controlling flowering are known. Signals from the vernalization pathway, photoperiod pathway, autonomous pathway, GA pathway, and plant age all contribute to ensuring the correct timing of flowering (Ehrenreich et al., 2009; Wellmer and Riechmann, 2010; Srikanth and Schmid, 2011). Within the vernalization pathway, a number of key players have been identified (Andrés and Coupland, 2012; Schmitz and Amasino, 2012; Song et al., 2012; Zografos and Sung, 2012). In winter annuals, a functional FRIGIDA (FRI) allele is required to activate FLOWERING LOCUS C (FLC). FLC strongly suppresses the flowering promoters FLOWERING LOCUS T (FT) and AGAMOUS LIKE20 (AGL20; also referred to as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) and thus inhibits flowering. During vernalization, VERNALIZATION INSENSITIVE3 (VIN3) represses FLC, and the repressed state is maintained in subsequent warm periods by epigenetic silencing (Crevillén and Dean, 2011; Zografos and Sung, 2012), allowing FT, AGL20, and, through positive feedback with AGL20, AGL24 (Liu et al., 2008) to initiate flowering. Many natural populations and most laboratory accessions, among them Columbia-0 (Col-0), carry nonfunctional FRI or FLC alleles and thus respond only weakly to vernalization, resulting in fast flowering, summer-annual life cycles (Johanson et al., 2000; Gazzani et al., 2003; Shindo et al., 2005).In addition to the well-studied FLC branch of the vernalization pathway, FLC-independent components of the vernalization response have been identified. For example, AGL19 has been found to promote flowering following vernalization without interacting with FLC (Schönrock et al., 2006), and relatives of FLC, the MADS AFFECTING FLOWERING genes (MAF1MAF5; MAF1 is also referred to as FLOWERING LOCUS M [FLM]; De Bodt et al., 2003), have been shown to inhibit flowering in a similar way to FLC (Ratcliffe et al., 2003; Scortecci et al., 2003; Werner et al., 2005; Sung et al., 2006; Gu et al., 2013). Genes MAF2 to MAF5 (Ratcliffe et al., 2003) are arranged in a tandem gene array and vary extensively among natural populations (Caicedo et al., 2009; Rosloski et al., 2010), and several recent studies have associated this polymorphic region with natural variation in flowering time (Salomé et al., 2011; Silady et al., 2011; Lasky et al., 2012; Fournier-Level et al., 2013; Grillo et al., 2013), making these genes interesting candidates for studying associations between flowering time and ecological parameters.Associating genetic variation at a single gene with latitude or altitude has often proven to be difficult (Shindo et al., 2005; Stinchcombe et al., 2005; Méndez-Vigo et al., 2011), although Caicedo et al. (2004) found evidence for epistatic interactions between FRI and FLC alleles associated with latitude. Interestingly, some recent studies suggest that regulatory processes within the vernalization pathway may contribute to natural phenotypic variability (Shindo et al., 2006; Strange et al., 2011). Overall, the response to vernalization appears to be a complex process in natural populations, potentially involving epigenetic regulation of a number of genes. Therefore, to gain a better understanding of the involvement of this complex genetic network in the response to ecological parameters, it is essential to study multiple interacting genes of the vernalization pathway simultaneously.Here, we used 15 natural Arabidopsis genotypes originating from an altitudinal cline (800–2,700 m) in the Swiss Alps to study the associations between vernalization, flowering initiation, gene expression and regulation, and altitude. Importantly, all genotypes originated from a restricted geographic range; thus, confounding effects such as differences in daylength, as found along latitudinal clines, can be excluded. We measured flowering time and the expression of 12 genes of the vernalization pathway under different vernalization scenarios to assess whether the response to vernalization is associated with altitude. In particular, we tested the hypotheses that (1) flowering time correlates with altitude; (2) genotypes from high altitudes need longer vernalization periods to initiate flowering reliably; (3) gene expression and regulation of the vernalization pathway can explain flowering time; (4) gene expression and regulation of the vernalization pathway is associated with altitude; and (5) FLC-independent branches of the vernalization pathway are important for initiating flowering and, thus, for altitudinal adaptation in natural populations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号