首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction alpha (alpha=ECS volume/total tissue volume), 2. tortuosity lambda (lambda2=free/apparent diffusion coefficient), reflecting the presence of diffusion barriers represented by, e.g., fine neuronal and glial processes or extracellular matrix molecules and 3. nonspecific uptake k'. These diffusion parameters differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Moreover, diffusion barriers may channel the migration of molecules in the ECS, so that diffusion is facilitated in a certain direction, i.e. diffusion in certain brain regions is anisotropic. Changes in the diffusion parameters have been found in many physiological and pathological states in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances in the CNS and thus extrasynaptic transmission, neuron-glia communication, transmitter "spillover" and synaptic cross-talk as well as cell migration, drug delivery and treatment.  相似文献   

2.
Extrasynaptic volume transmission, mediated by the diffusion of neuroactive substances in the extracellular space (ECS), plays an important role in short- and long-distance communication between nerve cells. The ability of a substance to reach extrasynaptic high-affinity receptors via diffusion depends on the ECS diffusion parameters, ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda2=free/apparent diffusion coefficient), which reflects the presence of diffusion barriers represented by, e.g., fine astrocytic processes or extracellular matrix molecules. These barriers channel the migration of molecules in the ECS, so that diffusion may be facilitated in a certain direction, i.e. anisotropic. The diffusion parameters alpha and lambda differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Changes in diffusion parameters have been found in many physiological and pathological states, such as development and aging, neuronal activity, lactation, ischemia, brain injury, degenerative diseases, tumor growth and others, in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances and thus extrasynaptic transmission, neuron-glia communication, mediator "spillover" and synaptic crosstalk as well as, cell migration. The various changes occurring during pathological states can be important for diagnosis, drug delivery and treatment.  相似文献   

3.
Glial cells and volume transmission in the CNS   总被引:8,自引:0,他引:8  
Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically during neuronal activity as well as during pathological states. Following their release, a number of neuroactive substances, including ions, mediators, metabolites and neurotransmitters, diffuse via the ECS to targets distant from their release sites. Glial cells affect the composition and volume of the ECS and therefore also extracellular diffusion, particularly during development, aging and pathological states such as ischemia, injury, X-irradiation, gliosis, demyelination and often in grafted tissue. Recent studies also indicate that diffusion in the ECS is affected by ECS volume inhomogeneities, which are the result of a more compacted space in certain regions, e.g. in the vicinity of oligodendrocytes. Besides glial cells, the extracellular matrix also changes ECS geometry and forms diffusion barriers, which may also result in diffusion anisotropy. Glial cells therefore play an important role in extrasynaptic transmission, for example in functions such as vigilance, sleep, depression, chronic pain, LTP, LTD, memory formation and other plastic changes in the CNS. In turn, ECS diffusion parameters affect neuron-glia communication, ionic homeostasis and movement and/or accumulation of neuroactive substances in the brain.  相似文献   

4.
The extracellular space (ECS) of the brain is a major channel for intercellular communication, nutrient and metabolite trafficking, and drug delivery. The dominant transport mechanism is diffusion, which is governed by two structural parameters, tortuosity and volume fraction. Tortuosity (lambda) represents the hindrance imposed on the diffusing molecules by the tissue in comparison with an obstacle-free medium, while volume fraction (alpha) is the proportion of tissue volume occupied by the ECS. Diffusion of small ECS markers can be exploited to measure lambda and alpha. In healthy brain tissue, lambda is about 1.6 but increases to 1.9-2.0 in pathologies that involve cellular swelling. Previously it was thought that lambda could be explained by the circumnavigation of diffusing molecules around cells. Numerical models of assemblies of convex cells, however, give an upper limit of about 1.23 for lambda. Therefore, additional factors must be responsible for lambda in brain. In principle, two mechanisms could account for the measured value: a more complex ECS geometry or an extracellular macromolecular matrix. Here we review recent work in ischemic tissue suggesting concave geometrical formations, dead-space microdomains, as a major determinant of extracellular tortuosity. A theoretical model of lambda based on diffusion dwell times supports this hypothesis and predicts that, in ischemia, dead spaces occupy approximately 60% of ECS volume fraction leaving only approximately 40% for well-connected channels. It is further proposed that dead spaces are present in healthy brain tissue where they constitute about 40% of alpha. The presence of dead-space microdomains in the ECS implies microscopic heterogeneity of extracellular channels with fundamental implications for molecular transport in brain.  相似文献   

5.
Changes in extracellular space (ECS) diffusion parameters, DC potentials and extracellular potassium concentration were studied during single and repeated cortical spreading depressions (SD) in 13-15 (P13-15), 21 (P21) and 90-day-old (adult) Wistar rats. The real-time iontophoretic method using tetramethylammonium (TMA+)-selective microelectrodes was employed to measure three ECS parameters in the somatosensory cortex: the ECS volume fraction alpha (alpha = ECS volume/total tissue volume), ECS tortuosity lambda (increase in diffusion path length) and the nonspecific TMA+ uptake k'. SD was elicited by needle prick. SD was significantly longer at P13-15 than at P21 and in adults. During SD, alpha in all age groups decreased from 0.21-0.23 to 0.05-0.09; lambda increased from 1.55-1.65 to 1.95-2.07. Ten minutes after SD, alpha (in adults) and lambda (all age groups) increased compared to controls. This increase persisted even 1 hour after SD. When SD was repeated at 1 hour intervals, both alpha and lambda showed a gradual cumulative increase with SD repetition. Our study also shows that cortical SD is, as early as P13, accompanied by severe ECS shrinkage and increased diffusion path length (tortuosity) with values similar to adults, followed by a long-lasting increase in ECS volume and tortuosity when compared to pre-SD values.  相似文献   

6.
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer''s disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron–glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.  相似文献   

7.
Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, lambda = (D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that lambda is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict lambda-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction alpha (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation lambda = ((3-alpha)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for lambda > 1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.  相似文献   

8.
Brain extracellular space (ECS) forms hindered pathways for molecular diffusion in chemical signaling and drug delivery. Hindrance is quantified by the tortuosity lambda; the tortuosity obtained from simulations using uniformly spaced convex cells is significantly lower than that measured experimentally. To attempt to account for the difference in results, this study employed a variety of ECS models based on an array of cubic cells containing open rectangular cavities that provided the ECS with dead-space microdomains. Monte Carlo simulations demonstrated that, in such ECS models, lambda can equal or exceed the typical experimental value of about 1.6. The simulations further revealed that lambda is relatively independent of cavity shape and the number of cavities per cell. It mainly depends on the total ECS volume fraction alpha, the cavity volume fraction alpha(c), and whether the cavity is located at the center of a cell face or formed at the junction of multiple cells. To describe the results from the different ECS models, an expression was obtained that related lambda to alpha, alpha(c), and an empirical exit factor beta that correlated with the ease with which a molecule could leave a cavity and its vicinity.  相似文献   

9.
This study sets out to compare and contrast the astrocyte reaction in two unrelated experimental designs both resulting in marked chronic astrogliosis and natural motoneuron death in the wobbler mutant mouse and brain damage in the context of transplantation of xenogeneic embryonic CNS tissue into the striatum of newborn mice. The combined use of GFAP-labeling and confocal imaging allows the morphological comparison between these two different types of astrogliosis. Our findings demonstrate that, in mice, after tissue transplantation in the striatum, gliosis is not restricted to the regions of damage: it occurs not only near the site of transplantation, the striatum, but also in more distant regions of the CNS and particularly in the spinal cord. In the wobbler mutant mouse, a strong gliosis is observed in the spinal cord, site of motoneuronal cell loss. However, moderate astrocytic reaction (increased GFAP-immunoreactivity) can also be found in other wobbler CNS regions, remote from the spinal cord. In the wobbler ventral horn, where neurons degenerate, the hypertrophied reactive astrocytes exhibit a dramatic increase of glial fibrils and surround the motoneuron cell bodies, occupying most of the motoneuron environment. The striking and specific presence of hypertrophic astrocytes in wobbler mice accompanied by a dramatic increase of glial fibrils located in the vicinity of motoneuron cell bodies suggests that short astrogliosis fills the space left by degenerating motoneurons and interferes with their survival. In the spinal cord of xenografted mice, chronic astrogliosis is also observed, but only glial processes without hypertrophied cell bodies are found in the neuronal micro-environment. It is tempting to speculate that gliosis in the wobbler spinal cord, the local accumulation of astrocyte cell bodies, and high density of astrocytic processes may interfere with the diffusion of neuroactive substances in gliotic tissue, some of which are neurotoxic, and cooperate or even trigger neuronal death.  相似文献   

10.

Seizure activity is governed by changes in normal neuronal physiology that lead to a state of neuronal hyperexcitability and synchrony. There is a growing body of research and evidence suggesting that alterations in the volume fraction (α) of the brain’s extracellular space (ECS) have the ability to prolong or even initiate seizures. These ictogenic effects likely occur due to the ECS volume being critically important in determining both the concentration of neuroactive substances contained within it, such as ions and neurotransmitters, and the effect of electric field-mediated interactions between neurons. Changes in the size of the ECS likely both precede a seizure, assisting in its initiation, and occur during a seizure, assisting in its maintenance. Different cellular ion and water transporters and channels are essential mediators in determining neuronal excitability and synchrony and can do so through alterations in ECS volume and/or through non-ECS volume related mechanisms. This review will parse out the relationships between how the ECS volume changes during normal physiology and seizures, how those changes might alter neuronal physiology to promote seizures, and what ion and water transporters and channels are important in linking ECS volume changes and seizures.

  相似文献   

11.
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k′), were found between α-syn-negative (α-syn −/−) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K+ (10 mM) and severe hypotonic stress (−100 mOsmol/l), but not during mild hypotonic stress (−50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn −/− in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn −/− mice, but the final values did not differ between α-syn −/− and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.  相似文献   

12.
Determination of Brain Interstitial Concentrations by Microdialysis   总被引:26,自引:20,他引:6  
Microdialysis is an extensively used technique for the study of solutes in brain interstitial space. The method is based on collection of substances by diffusion across a dialysis membrane positioned in the brain. The outflow concentration reflects the interstitial concentration of the substance of interest, but the relationship between these two entities is at present unclear. So far, most evaluations have been based solely on calibrations in saline. This procedure is misleading, because the ease by which molecules in saline diffuse into the probe is different from that of tissue. We describe here a mathematical analysis of mass transport into the dialysis probe in tissue based on diffusion equations in complex media. The main finding is that diffusion characteristics of a given substance have to be included in the formula. These include the tortuosity factor (lambda) and the extracellular volume fraction (alpha). We have substantiated this by studies in a well-defined complex medium (red blood cell suspensions) as well as in brain. We conclude that the traditional calculation procedure results in interstitial concentrations that are too low by a factor of lambda 2/alpha for a given compound.  相似文献   

13.
Diffusion in the extracellular space (ECS) is crucial for normal central nervous system physiology. The determinants of ECS diffusion include viscous interactions with extracellular matrix/plasma membranes ("viscosity") and ECS geometry ("tortuosity"). To resolve viscosity versus tortuosity effects, we measured direction-dependent (anisotropic) diffusion in ECS in mouse spinal cord by photobleaching using an elliptical spot produced by a cylindrical lens in the excitation path. Anisotropic diffusion slowed fluorescence recovery when the long axis of the ellipse was parallel versus perpendicular to the direction of faster diffusion. A mathematical model was constructed to deduce diffusion coefficients (D(x), D(y)) from fluorescence recovery measured for parallel and perpendicular orientations of the long axis of the ellipse. Elliptical spot photobleaching was validated by photobleaching aqueous-phase fluorophores on a diffraction grating, where diffusion is one-dimensional. Measurement of the diffusion of 70 kDa FITC-dextran in spinal cord in living mice indicated that viscosity slows diffusion by approximately 1.8-fold compared with its diffusion in solution. ECS geometry hinders diffusion across (but not along) axonal fibers in spinal cord further by approximately fivefold. In cerebral cortex, however, approximately 50% of the hindrance to ECS diffusion comes from viscosity and approximately 50% from tortuosity. We suggest that the extracellular matrix might have evolved to facilitate rather than hinder diffusion even for large molecules.  相似文献   

14.
A humoral mechanism of the intercellular communication in the CNS based on diffusion of neuroactive compounds within the brain extracellular space, was studied. The leading role of the volume transmission was shown in the early stage of ontogeny. Structural basis of this mechanism was studied in adult mammals, and the data on extrasynaptic receptors and release of classical neurotransmitters into the extracellular space was reviewed.  相似文献   

15.
Diffusion-weighted nuclear magnetic resonance (NMR) imaging (DWI) is sensitive to the random translational motion of water molecules due to Brownian motion. Although the mechanism is still not completely understood, the cellular swelling that accompanies cell membrane depolarization results in a reduction in the net displacement of diffusing water molecules and thus a concomitant reduction in the apparent diffusion coefficient (ADC) of tissue water. Cerebral regions of reduced ADC appear hyperintense in a DWI and this technique has been used extensively to study acute stroke. In addition to cerebral ischemia, reductions in the ADC of cerebral water have been observed following cortical spreading depression, ischemic depolarizations (IDs), transient ischemic attack (TIA), status epilepticus, and hypoglycemia. Although the mechanism responsible for initiating membrane depolarization varies in each case, the ensuing cell volume changes follow a similar pattern. Water ADC values are also affected by the presence and orientation of barriers to translational motion (such as cell membranes and myelin fibers) and thus NMR measures of anisotropic diffusion are sensitive to more chronic pathological states where the integrity of these structures is modified by disease. Both theoretical prediction and experimental evidence suggest that the ADC of tissue water is related to the volume fraction of the interstitial space via the electrical conductivity of the tissue. The implication is that acute neurological disorders that exhibit electrical conductivity changes should also exhibit ADC changes that are detectable by DWI. A qualitative correlation between electrical conductivity and the ADC of water has been demonstrated in a number of animal model studies and the results indicate that reduced ADC values are associated with reductions in the extracellular volume fraction and increased extracellular tortuosity. The close relationship between ADC changes and cell volume changes in various pathological states suggests that NMR measurements are also sensitive to chemical communication between cells through the extracellular space (i.e., extrasynaptic or volume transmission, VT).  相似文献   

16.
Dual-probe microdialysis was used to study interstitial diffusion in the rat brain. A radiolabelled tracer, (3H]mannitol, was continuously infused at different concentrations via a probe acutely implanted into the striatum of an anaesthetized male rat or into a dilute agar gel. Samples were collected by a second probe placed 1 mm away from the first, and the recovered [3H]mannitol was measured by liquid scintillation counting. In the striatum, the delivery of [3H]mannitol was counteracted by its removal from the extracellular space by passive uptake into cells and clearance into the microcirculation, causing the diffusion profile to approach quasi steady-state levels within 2 h. Diffusion data from brain and agar were analysed using a mathematical model. The apparent (effective) diffusion coefficient for [3H]mannitol was D* = 2.9 x 10(-6) cm2/s, the effective volume fraction alpha* = 0.30 and the clearance rate constant kappa= 2.3 x 10(-5)/s. A tortuosity, lambda = 1.81, and penetration distance r = 4.2 mm, were calculated. We conclude that, using dual-probe microdialysis, parameters reflecting geometric and dynamic tissue properties may be obtained using appropriate mathematical analysis. Quantitative dual-probe microdialysis will be valuable in characterizing interstitial diffusion and the clearance processes underpinning volume transmission in the brain.  相似文献   

17.
Within the computational neuroscience community, there has been a focus on simulating the electrical activity of neurons, while other components of brain tissue, such as glia cells and the extracellular space, are often neglected. Standard models of extracellular potentials are based on a combination of multicompartmental models describing neural electrodynamics and volume conductor theory. Such models cannot be used to simulate the slow components of extracellular potentials, which depend on ion concentration dynamics, and the effect that this has on extracellular diffusion potentials and glial buffering currents. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model, which we believe is the first model to combine compartmental neuron modeling with an electrodiffusive framework for intra- and extracellular ion concentration dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track of all intraneuronal, intraglial, and extracellular ion concentrations and electrical potentials, (ii) accounts for action potentials and dendritic calcium spikes in neurons, (iii) contains a neuronal and glial homeostatic machinery that gives physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for glial and neuronal swelling caused by osmotic transmembrane pressure gradients. The edNEG model accounts for the concentration-dependent effects on ECS potentials that the standard models neglect. Using the edNEG model, we analyze these effects by splitting the extracellular potential into three components: one due to neural sink/source configurations, one due to glial sink/source configurations, and one due to extracellular diffusive currents. Through a series of simulations, we analyze the roles played by the various components and how they interact in generating the total slow potential. We conclude that the three components are of comparable magnitude and that the stimulus conditions determine which of the components that dominate.  相似文献   

18.
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal–glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.  相似文献   

19.
Two classes of substances exist within the extracellular space: energetic and informational. Examples of the former are glucose, dissolved oxygen and CO2 while the latter include excitatory amino acids, cathecholamines and opiates. The simple ions Na+ and Cl- are generally associated with energetic processes while extracellular K+ and Ca2+ tend to be informational in function. Local release of an informational substance brings about a concentration gradient that causes the substance to be dispersed in the extracellular space by diffusion. This process is modified relative to a free aqueous medium by the constraints of volume fraction, tortuosity and uptake. Volume fraction is defined simply as the fraction of a brain region that is extracellular. If a given quantity of substance is released into a region with a reduced volume fraction then the substance will reach a higher concentration than it would in a free medium. Tortuosity is related to the increase in the path length of the random walk of a diffusing particle due to the necessity to navigate around cellular obstructions. Tortuosity manifests itself as a decrease in the diffusion coefficient. Uptake represents the movement of a substance from the extracellular space to the intracellular. Since initially a concentration gradient exists in this direction and all membranes have some permeability some concentration-dependent uptake always occurs. In addition there exist specific carrier-mediated uptake processes for some substances such as amino acids or catecholamines. In some regions the dispersal process can be dominated by uptake rather than diffusion. While volume fraction, tortuosity and uptake have all been demonstrated by a technique based on the use of radiolabels and other methods, these classical techniques have limited spatial and temporal resolution. The advent of methods based on micro-injection of substances by iontophoresis or pressure and subsequent detection with ion-selective microelectrodes (ISMs) or voltammetric microsensors (VMs) has opened a new window onto the dynamic local behavior of the extracellular space. In the last decade our laboratory and others have studied the migration of the test substances tetramethylammonium, tetraethylammonium, AsF6- and alpha naphthalene sulfonate, the endogenous ions K+ and Ca2+, the epileptogenic agent penicillin and the neurotransmitter dopamine. These studies have been carried out on the cerebellum and some other regions in a variety of species that include rat, turtle, skate and an intervertebrate, the cuttlefish.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Recognition of the importance of glial cells in nervous system functioning is increasing, specifically regarding the modulation of neural activity. This brief review focuses on some of the morphological and functional interactions that take place between astroglia and neurons. Astrocyte-neuron interactions are of special interest because this glia cell type has intimate and dynamic associations with all parts of neurons, i.e., somata, dendrites, axons, and terminals. Activation of certain receptors on astrocytes produces morphological changes that result in new contacts between neurons, along with physiological and functional changes brought about by the new contacts. In response to activation of other receptors or changes in the extracellular microenvironment, astrocytes release neuroactive substances that directly excite or inhibit nearby neurons and may modulate synaptic transmission. Although some of these glial-neuronal interactions have been known for many years, others have been quite recently revealed, but together they are forming a compelling story of how these two major cell types in the brain carry out the complex tasks that mammalian nervous systems perform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号