首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Peritoneal macrophages from LPS hyporesponsive C3H/HeJ mice lose the capacity to bind and phagocytose opsonized sheep erythrocytes (EA) over a 48-hr culture period. This loss in Fc receptor capacity is markedly different from the progressive increase in phagocytic ability exhibited by cultured macrophages derived from LPS-responsive C3H/HeN mice. Since dibutyryl-cyclic adenosine monophosphate (DBcAMP) has previously been reported to modulate membrane receptor expression in lymphocytes and certain macrophage-like cell lines, we examined its effects on EA binding and phagocytosis by C3H/HeJ macrophages. DBcAMP not only reverses the binding defect in C3H/HeJ macrophages but also restores EA phagocytosis to the level of control C3H/HeN cultures. 8-Bromo-cAMP, as well as other agents known to elevate intracellular cAMP (i.e., isoproterenol plus isobutylmethylxanthine or prostaglandin E2) also corrected the phagocytic defect. Since the C3H/HeJ macrophage phagocytic defect can also be reversed by in vitro stimulation with a lymphokine-rich culture supernatant, we examined the effect of this treatment on intracellular cAMP levels. Lymphokine treatment produced a 60% increase in the levels of macrophage intracellular cAMP. These findings suggest that the C3H/HeJ differentiation defect may be secondary to some abnormality in a cAMP dependent pathway.  相似文献   

2.
Phagocytosis is a primary innate response of both macrophages and neutrophils involving the formation of filamentous actin (F-actin)-rich protrusions that are extended around opsonized pathogens to form a phagocytic cup, resulting in their subsequent internalization. The molecular mechanism for this is still not completely understood. We now show for the first time that phospholipase D2 (PLD2) binds to growth factor receptor-bound protein 2 (Grb2) and to the Wiskott-Aldrich syndrome protein (WASp) to form a heterotrimer complex, PLD2-Grb2-WASp, and present the mechanism of interaction. Grb2 binds to the Y169/Y179 residues of PLD2 using its only SH2 domain, and it interacts with the poly-proline region of WASp using its two SH3 domains. The PLD2-Grb2-WASp heterotrimer can be visualized in early phagocytic cups of macrophages ingesting opsonized red blood cells, where it associates with polymerized actin. Cup colocalization and phagocytosis are disrupted with mutants that alter binding at either of the two proteins or by silencing Grb2 with RNA interference (RNAi). WASp association to PLD2-K758R, a lipase-inactive mutant, still occurs, albeit at lower levels, indicating that PLD2 plays a second role in phagocytosis, which is the production of phosphatidic acid (PA) and activation of phosphatidylinositol 5-kinase (PI5K) with subsequent synthesis of phosphatidylinositol 4,5-bisphosphate (PIP(2)). The latter can be blocked with RNAi, which negates phagocytosis. Lastly, a constitutively "open" active form of WASp (WASp-L270P) brings phagocytosis to its maximum level, which can be mimicked with WASp-WT plus PLD2 or plus PA. Since neither a protein-protein disruption nor lack of PLD activity completely negates cup formation or phagocytosis, we posit a two-step mechanism: PLD2 anchors WASp at the phagocytic cup through Grb2 following protein-protein interactions and also activates it, making key lipids available locally. The heterotrimer PLD2-Grb2-WASp then enables actin nucleation at the phagocytic cup and phagocytosis, which are at the center of the innate immune system function.  相似文献   

3.
We have investigated the interaction of C1q, a subunit of the first component of complement, with human monocytes and culture-derived macrophages. Adherence of these mononuclear phagocytes to surfaces coated with C1q induced a marked enhancement of the phagocytosis of sheep erythrocytes opsonized with IgG anti-Forssman antibody (EA-IgG). This C1q-mediated enhancement of phagocytosis was dose dependent, and was specifically blocked by pretreatment of the C1q-coated surfaces with F(ab')2 anti-C1q. The augmentation of FcR-mediated phagocytosis by C1q was determined to be a result of the interaction between the C1q and the phagocytic effector cell, and was not due to interaction between the surface-bound C1q and the EA-IgG. Neither resting nor N-formyl-methionyl-leucyl-phenylalanine-stimulated polymorphonuclear leukocytes were induced by C1q to increase FcR-mediated phagocytosis. Experiments conducted with purified fragments of C1q suggest that the C1q phagocytosis enhancement signal resides in the collagen-like tail domain of the molecule. This region is the same portion of the molecule previously shown to interact with the cell surface C1q receptor. Native type I collagen was unable to enhance FcR-mediated phagocytosis by mononuclear phagocytes. It has been demonstrated that C1q can be localized to areas of inflammation, and additionally C1q can be secreted by macrophages in culture. In view of these findings and the results of our present study, we hypothesize that C1q could provide local, direct, and non-opsonic enhancement of phagocytosis by mononuclear phagocytes in areas of infection and inflammation.  相似文献   

4.
Modulation of the macrophage oxidative burst by Histoplasma capsulatum   总被引:11,自引:0,他引:11  
The production of reactive oxygen species by phagocytic cells is an important host defense against invading microorganisms. Because pathogens that achieve intracellular survival escape destruction by reactive oxidants, we investigated the relationship between the intracellular survival of H. capsulatum and the macrophage oxidative burst. H. capsulatum yeast failed to stimulate the release of reactive oxygen metabolites in unprimed murine macrophages despite extensive phagocytosis of the microorganisms. This effect was observed with live as well as heat-killed fungi over a wide range of yeast-to-macrophage ratios. Preincubation of murine macrophages with heat-killed H. capsulatum (but not with latex spheres), followed by incubation with unopsonized zymosan, resulted in inhibition of oxidative burst triggering without inhibition of zymosan phagocytosis. Ingestion of H. capsulatum yeast opsonized with the cognate mouse antibody resulted in significant oxidant release, suggesting that suppression of the respiratory burst may be circumvented through Fc-mediated phagocytosis.  相似文献   

5.
Leishmania spp. protozoa are obligate intracellular parasites that replicate in macrophages during mammalian infection. Efficient phagocytosis and survival in macrophages are important determinants of parasite virulence. Macrophage lines differ dramatically in their ability to sustain intracellular Leishmania infantum chagasi (Lic). We report that the U937 monocytic cell line supported the intracellular replication and cell-to-cell spread of Lic during 72?h after parasite addition, whereas primary human monocyte-derived macrophages (MDMs) did not. Electron microscopy and live cell imaging illustrated that Lic promastigotes anchored to MDMs via their anterior ends and were engulfed through symmetrical pseudopods. In contrast, U937 cells bound Lic in diverse orientations, and extended membrane lamellae to reorient and internalize parasites through coiling phagocytosis. Lic associated tightly with the parasitophorous vacuole (PV) membrane in both cell types. PVs fused with LAMP-1-expressing compartments 24?h after phagocytosis by MDMs, whereas U937 cell PVs remained LAMP-1 negative. The expression of one phagocytic receptor (CR3) was higher in MDMs than U937 cells, leading us to speculate that parasite uptake proceeds through dissimilar pathways between these cells. We hypothesize that the mechanism of phagocytosis differs between primary versus immortalized human macrophage cells, with corresponding differences in the subsequent intracellular fate of the parasite.  相似文献   

6.
7.
The present study demonstrates that SRBC can be opsonized with untreated human serum such that lysis by active complement components is minimal but sufficient opsonization occurs to permit high rates of complement-mediated phagocytosis. Phagocytosis of SRBC opsonized with 2% whole human serum by human monocyte-derived macrophages was quantified in a colourimetric assay. Ingestion of SRBC was shown to occur solely via complement receptors because no phagocytosis was observed when SRBC were coated with heat- inactivated human serum, phagocytosis was augmented by the phorbol ester, PMA, and phagocytosis was inhibited by a protein kinase C (PKC)-specific inhibitor RO 31-8220. This method was used to demonstrate directly that HIV-1 infection of human monocyte-derived macrophages inhibits complement-mediated phagocytosis and will provide a useful tool for pharmacological investigations on complement-mediated phagocytosis by adherent macrophages.  相似文献   

8.
In order to gain a better understanding of the role of ecto-NAD+ glycohydrolase, an enzyme predominantly associated with phagocytic cells, we have studied its fate in murine macrophages (splenic, resident peritoneal and Kupffer cells) during phagocytosis of opsonized on mannosylated latex beads. In parallel, we have also monitored nucleotide pyrophosphatase, another ecto-enzyme of macrophages. Phagosomes were isolated by flotation in a discontinuous sucrose gradient and the enzyme activities were determined with fluorometric methods. Low levels of NAD+ glycohydrolase and nucleotide pyrophosphatase could be measured associated with the phagosomal fractions, eg, respectively less than 4.5% and 10% in spleen macrophages. The phagosomal activities originate from the plasma membrane, ie they were latent and inactivation of ecto-NAD+ glycohydrolase with the diazonium salt of sulfanilic acid resulted in a marked decrease of this enzyme activity in the phagosomal fractions. Pre-labelling of the cell surface by [3H]-galactosylation indicated that NAD+ glycohydrolase is internalized to a lesser extent than an average surface-membrane unit. These results indicate that if ecto-NAD+ glycohydrolase of macrophages can be internalized to a limited extent during phagocytosis of opsonized or mannosylated latex beads, this enzyme appears to be predominantly excluded from the surface area involved in the uptake of such particles.  相似文献   

9.
Characteristics of the beta-glucan receptor of murine macrophages   总被引:6,自引:0,他引:6  
Phagocytosis of heat-killed yeast (HK-yeast), zymosan, and glucan particles by thioglycollate-elicited mouse peritoneal macrophages (Tg-macrophages) was inhibited by soluble glucan polymers/oligomers. The inhibitory capacity of soluble glucans decreased steeply with the decrease in the degree of polymerization (DPn); i.e., the concentration at which 50% inhibition of phagocytosis was attained was 0.23 microgram/ml for glucan 1 (DPn 24.8), 0.8 microgram/ml for glucan 2 (DPn 21.9), and greater than 40 micrograms/ml for glucan 3 (DPn 13.8). The glucan polymers were obtained by partial hydrolysis of glucan particles with formic acid (90%, 95 degrees C, 20 min) and fractionation according to solubility in ethanol water mixtures. A short preincubation (5 min, 4 or 37 degrees C) of Tg-macrophages with glucan 1 led to a subsequent inhibition of HK-yeast phagocytosis. Recovery of the phagocytic function was slow (27% in 3 h; 68% in 5 h) and required protein synthesis. beta-Glucan receptor expression was also suppressed by dexamethasone treatment. Mannan exerted at high concentrations (5 mg/ml) a partial inhibitory activity which was totally abrogated by beta-glucanase treatment. Treatment of macrophages with glucan together with mannan did not enhance the inhibitory capacity of glucan beyond the component abrogated by enzyme treatment. Contribution of local opsonization of HK-yeast to the phagocytic response (involvement of complement receptors) was indirectly negated; (a) glucan 1 which inhibits HK-yeast phagocytosis by up to 95% is not an activator of complement and therefore could not compete for the opsonizing proteins; (b) cycloheximide treatment in itself inhibited only partially HK-yeast phagocytosis whereas it inhibited the reexpression of the glucan receptors; (c) glucan 1 did not affect the phagocytosis of serum opsonized HK-yeast. Thus under the experimental conditions described, phagocytosis of HK-yeast by murine macrophages is mediated by and large by the beta-glucan receptors, while the mannose receptors and complement receptors do not contribute to the process.  相似文献   

10.
Phagocytosis was studied in rat Kupffer cells in vitro by using opsonized sheep red cells as objects and inducing attachment and ingestion through the Fc and C3 receptors. The Fc receptors functioned by and large in the same manner as in the peritoneal macrophages. When the red cells were opsonized with IgM and complement, there was attachment but little ingestion in a serum-free medium. Newborn calf serum was found to trigger ingestion. Our experiments provided no conclusive evidence as to the nature of this triggering mechanism. The limiting factor in phagocytosis was the cytoplasmic volume of the phagocyte rather than the availability of surface receptors. The expression of surface receptors on cells in culture depended on length of culture and degree of spreading. We confirmed the available information on the energy requirements of phagocytosis as studied in peritoneal macrophages. As judged by isotope release, digestion of the red cells was in process shortly after ingestion. However, morphological examination failed to detect any changes in appearance prior to 4 h. After a blocking dose of sheep red cells, a rather long period (40 h) was required before cells fully recovered their phagocytic capacity.  相似文献   

11.
C1q and members of the defense collagen family are pattern recognition molecules that bind to pathogens and apoptotic cells and trigger a rapid enhancement of phagocytic activity. Candidate phagocytic cell receptors responsible for the enhancement of phagocytosis by defense collagens have been proposed but not yet discerned. Engagement of phagocyte surface-associated calreticulin in complex with the large endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP/CD91), by defense collagens has been suggested as one mechanism governing enhanced ingestion of C1q-coated apoptotic cells. To investigate this possibility, macrophages were derived from transgenic mice genetically deficient in LRP resulting from tissue-specific loxP/Cre recombination. LRP-deficient macrophages were impaired in their ability to ingest beads coated with an LRP ligand when compared with LRP-expressing macrophages, confirming for the first time that LRP participates in phagocytosis. When LRP-deficient and -expressing macrophages were plated on C1q-coated slides, they demonstrated equivalently enhanced phagocytosis of sheep RBC suboptimally opsonized with IgG or complement, compared with cells plated on control protein. In addition, LRP-deficient and -expressing macrophages ingested equivalent numbers of apoptotic Jurkat cells in the presence and absence of serum. Both LRP-deficient and -expressing macrophages ingested fewer apoptotic cells when incubated in the presence of C1q-deficient serum compared with normal mouse serum, and the addition of purified C1q reconstituted uptake to control serum levels. These studies demonstrate a direct contribution of LRP to phagocytosis and indicate that LRP is not required for the C1q-triggered enhancement of phagocytosis, suggesting that other, still undefined, receptor(s) exist to mediate this important innate immune function.  相似文献   

12.
The fluorometric method was used to study guantitative parameters of phagocytosis of fluorescein-labeled Escherichia coli cells by mouse peritoneal macrophages. E. coli cells were conjugated with fluoresceinisothiocyanate (FITC) and then incubated with macrophages. At the end of the assay phagocytosis was arrested with a lysing solution (0.5% Triton X-100 in 0.01 M phosphate-buffered 0.15 M saline, pH 7.4). Trypan blue at a concentration of 0.04% was used as a quenching agent to differentiate between attachment and ingestion of E. coli cells. The time course analysis within this method showed that phagocytosis of E. coli cells was temperature and opsonin dependent. The number of E. coli cells ingested by macrophages increased rapidly during the initial 60 min of incubation at 37 degrees C. E. coli cells required opsonization with 5% native serum to achieve their optimal uptake. The uptake of nonopsonized bacteria by macrophages was significantly lower that that of opsonized ones (P < 0.05). It was demonstrated that sodium azide inhibited phagocytosis of E. coli cells by mouse peritoneal macrophages in a dose-dependent manner.  相似文献   

13.
Recent evidence suggests that extension of pseudopods during phagocytosis requires localized insertion of endomembrane vesicles. The nature of these vesicles and the processes mediating their release and insertion are unknown. COPI plays an essential role in the budding and traffic of membrane vesicles in intracellular compartments. We therefore assessed whether COPI is also involved in phagosome formation. We used ldlF cells, a mutant line derived from Chinese hamster ovary cells that express a temperature-sensitive form of epsilonCOP. To confer phagocytic ability to ldlF cells, they were stably transfected with Fc receptors type IIA (FcgammaRIIA). In the presence of functional COPI, FcgammaRIIA-transfected ldlF cells effectively internalized opsonized particles. In contrast, phagocytosis was virtually eliminated after incubation at the restrictive temperature. Similar results were obtained impairing COPI function in macrophages using brefeldin A. Notably, loss of COPI function preceded complete inhibition of phagocytosis, suggesting that COPI is indirectly required for phagocytosis. Despite their inability to internalize particles, COPI-deficient cells nevertheless expressed normal levels of FcgammaRIIA, and signal transduction appeared unimpeded. The opsonized particles adhered normally to COPI-deficient cells and were often found on actin-rich pedestals, but they were not internalized due to the inability of the cells to extend pseudopods. The failure to extend pseudopods was attributed to the inability of COPI-deficient cells to mobilize endomembrane vesicles, including a VAMP3-containing compartment, in response to the phagocytic stimulus.  相似文献   

14.
We have investigated the phagocytic properties of the macrophage-like cell line DCH-7, derived from fusion of mouse macrophages with a mouse T-lymphoma cell line. These cells phagocytosed opsonized bacteria. IgG appeared to be the major opsonin forStaphylococcus aureus Wood 46 as well as for threeEscherichia coli strains; complement components were not required as opsonins. Intracellular bacteria survived to a large extent. This model system should be a useful tool for studying the process of phagocytosis and phagocytic killing of bacteria.  相似文献   

15.
Defocusing microscopy was used for real-time observation and quantification of membrane surface dynamics in murine bone marrow macrophages. Small random membrane fluctuations (SRMF), possibly metabolic driven, were detected uniformly over all membrane surface. Morphological and dynamical parameters of ruffles, such as shape, dimensions, and velocity of propagation, were analyzed. Optical tweezers were used to promote phagocytosis of single Leishmania amazonensis amastigotes by selected macrophages. Analysis of ruffling activity on the macrophages before and during phagocytosis of the parasites indicated that increased ruffling response near forming phagosomes, most likely induced by the parasite, accelerates phagocytosis. The effects of temperature decrease on the dynamics of membrane surface fluctuations and on the phagocytosis of parasites were used to determine the overall activation energies involved in these processes. The values obtained support the existence of strong correlation between membrane motility and phagocytic capacity.  相似文献   

16.
This paper reviews sensitive and simple quantitative evaluation of macrophage phagocytosing capacity by applying fluoresecin-labeled Sacharomyces cerevisiae cells. Yeast cells were conjugated with fluoresceinisothiocyanate (FITC) and used as fluorescent particles. A time course analysis within this method showed that phagocytosis of yeast cells was temperature dependent and that the number of that ones ingested by macrophages increased rapidly during the initial 60 min of incubation at 37 degrees C. Free fluorescent cells can be effectively removed by aspiration from the well. Furthermore, yeast cells required preopsonization with serum to achieve optimal uptake of the cells. The uptake of nonopsonized yeast cells by macrophages was significantly lower than that of opsonized cells (P < 0.05). We propose that about 50% of mouse macrophages can carry functionally active FcR responsible for phagocytosis.  相似文献   

17.
ABSTRACT. Trypanosoma congolense bloodstream forms preincubated with a high titer of anti-variant surface antigen (VSG)-specific antibody, a low amount of anti-VSG plus complement-active mouse serum (MS), MS alone, and trypsin were cocultivated with mouse peritoneal macrophages in vitro. Immunofluorescence as well as transmission and scanning electron microscopy revealed that upon attachment to the macrophages' surface, trypanosomes opsonized with anti-VSG/MS formed opsonized filopodia, which were rapidly internalized by the phagocytes. Although these cells attached as frequently as anti-VSG or trypsin-pretreated parasites, the rate of phagocytosis of anti-VSG/MS pretreated trypanosomes was reduced significantly. Trypanosomes pretreated with high antibody titers alone were lysed on the surface of the macrophages before phagocytosis was completed. Parasites opsonized with complement alone adhered only occasionally and were rarely phagocytosed. Trypsin-treated trypanosomes, which served as positive control cells, rapidly attached and remained intact until ingulfment by the macrophages was completed. Untreated control parasites did not attach to the macrophages and were not phagocytosed. Cocultivation of macrophages with anti-VSG/MS-opsonized trypanosomes caused internalization of the flagellum by membrane fusion. Filopodia formation by T. congolense is thus correlated with a marked reduction in phagocytosis even in the presence of only a sublytic antibody titer.  相似文献   

18.
Trypanosoma congolense bloodstream forms preincubated with a high titer of anti-variant surface antigen (VSG)-specific antibody, a low amount of anti-VSG plus complement-active mouse serum (MS), MS alone, and trypsin were cocultivated with mouse peritoneal macrophages in vitro. Immunofluorescence as well as transmission and scanning electron microscopy revealed that upon attachment to the macrophages' surface, trypanosomes opsonized with anti-VSG/MS formed opsonized filopodia, which were rapidly internalized by the phagocytes. Although these cells attached as frequently as anti-VSG or trypsin-pretreated parasites, the rate of phagocytosis of anti-VSG/MS pretreated trypanosomes was reduced significantly. Trypanosomes pretreated with high antibody titers alone were lysed on the surface of the macrophages before phagocytosis was completed. Parasites opsonized with complement alone adhered only occasionally and were rarely phagocytosed. Trypsin-treated trypanosomes, which served as positive control cells, rapidly attached and remained intact until ingulfment by the macrophages was completed. Untreated control parasites did not attach to the macrophages and were not phagocytosed. Cocultivation of macrophages with anti-VSG/MS-opsonized trypanosomes caused internalization of the flagellum by membrane fusion. Filopodia formation by T. congolense is thus correlated with a marked reduction in phagocytosis even in the presence of only a sublytic antibody titer.  相似文献   

19.
Toxoplama gondii (Apicomplexa: Coccidia), an obligatory intracellular parasite with a unique capacity to invade virtually all nucleated cell type from warm-blooded vertebrate hosts. Despite the efficiency with which Toxoplasma enters its host cell, it remains unresolved if invasion occurs by direct penetration of the parasite or through phagocytosis. In the present work, electron microscopic study was designed to examine the entry process of Toxoplasma (RH strain) into macrophages and non phagocytic-host cells (Hela cells) and to observe the ultrastructure changes associated with intracellular parasitism. The results showed that both active invasion and phagocytosis were occurred and revealed that invasion is an ordered process that initiates with binding of the parasite at its apical end followed by tight-fitting invagination of the host cell membrane and a prominent constriction in the parasite at the site of penetration. The process ended by the professional parasitophorous vacuole that is distinct at the outset from those formed by phagocytosis in which once Toxoplasma triggered, phagocytic uptake can proceed by capture of the parasite within a loose fitting vacuole formed by localized membrane ruffling. The cytopathic effects of the parasite on macrophages and Hela cells were demonstrated within 5–15 h post-inoculation in the form of degenerative mitochondria, swelling Golgi apparatus and widening of endoplasmic reticulum indicating intracellular oedema. These changes were exaggerated and several cells were found dead after 48–72 h.  相似文献   

20.
Actin cytoskeleton remodeling is fundamental for Fcγ receptor–driven phagocytosis. In this study, we find that the leukocyte-specific protein 1 (LSP1) localizes to nascent phagocytic cups during Fcγ receptor–mediated phagocytosis, where it displays the same spatial and temporal distribution as the actin cytoskeleton. Down-regulation of LSP1 severely reduces the phagocytic activity of macrophages, clearly demonstrating a crucial role for this protein in Fcγ receptor–mediated phagocytosis. We also find that LSP1 binds to the class I molecular motor myosin1e. LSP1 interacts with the SH3 domain of myosin1e, and the localization and dynamics of both proteins in nascent phagocytic cups mirror those of actin. Furthermore, inhibition of LSP1–myosin1e and LSP1–actin interactions profoundly impairs pseudopodial formation around opsonized targets and their subsequent internalization. Thus the LSP1–myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling during Fcγ receptor–driven phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号