首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of hepatic microsomal membrane were investigated 6 weeks after both 50 and 75% distal-small-bowel resection (SBR). A significant decrease in hepatic cholesteryl ester levels was observed after SBR, with a significant increase in the cholesteryl ester content of the livers of 75% SBR compared with the 50% SBR. Hepatic total acylglycerols, free cholesterol and phospholipid levels were not modified after the surgical operation. Microsomal free cholesterol was increased after both 50 and 75% SBR. However, a decrease in both microsomal ACAT activity and cholesteryl ester levels were found in microsomes (microsomal fractions) of resected rats, both changes being higher after 75 than after 50% resection. The total phospholipid content of the microsomes did not change after the surgical operation. The microsomal phospholipid fatty acid composition indicated higher changes after 75 than after 50% SBR. These results demonstrated that, in resected animals: (1) the activity of the enzyme responsible for catalysing cholesterol esterification (ACAT) is decreased, and (2) hepatic microsomal free cholesterol does not appear to influence the activity of ACAT.  相似文献   

2.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

3.
1. The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of intestinal microsomal membrane were investigated 6 weeks after both 50 and 75% distal small bowel resection (DSBR). 2. No changes in both microsomal ACAT activity and cholesteryl ester levels were found, while microsomal non-esterified cholesterol content was increased after the surgical operation. 3. The total phospholipid content of the microsomes did not change as a result of DSBR. 4. The microsomal phospholipid fatty acid composition showed a significant increase in saturated fatty acids together with no changes in both total monounsaturated and total polyunsaturated fatty acids after resection. 5. An increase in the levels of linoleic acid accompanied by a decrease in arachidonic acid was found in remnant intestine of resected rats.  相似文献   

4.
Beta very low density lipoprotein (VLDL) was isolated from a patient with hepatic lipase deficiency. The particles were found to contain apolipoprotein B-100 (apoB) and apolipoprotein E (apoE) and were rich in cholesterol and cholesteryl ester relative to VLDL with pre beta electrophoretic mobility. These particles were active in displacing human low density lipoprotein (LDL) from the fibroblast apoB,E receptor and produced a marked stimulation of acyl-CoA:cholesterol acyltransferase. Treatment of intact beta-VLDL with trypsin abolished its ability to displace LDL from fibroblasts. Incubation of trypsin treated beta-VLDL with fibroblasts resulted in a significant stimulation of acyl-CoA:cholesterol acyltransferase activity. beta-VLDL isolated from a patient with Type III hyperlipoproteinemia and an apoE2/E2 phenotype had a higher cholesteryl ester/triglyceride ratio than the beta-VLDL of hepatic lipase deficiency and contained apoB48. It displaced LDL from fibroblasts to a small but significant extent. The Type III beta-VLDL stimulated acyl-CoA:cholesterol acyltransferase to a level similar to that of trypsin-treated beta-VLDL isolated from the hepatic lipase-deficient patient. These results demonstrate that the cholesterol-rich beta-VLDL particles present in patients with hepatic lipase deficiency are capable of interacting with fibroblasts via the apoB,E receptor and that this interaction is completely due to trypsin-sensitive components of the beta-VLDL. These particles were very effective in stimulating fibroblast acyl-CoA:cholesterol acyltransferase. This stimulation was due to both trypsin-sensitive and trypsin-insensitive components.  相似文献   

5.
Compound 58-035 (3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]pro panamide) has been found to inhibit the accumulation of cholesteryl esters in both rat hepatoma (Fu5AH) cells and arterial smooth muscle cells in culture. To explore the specificity of 58-035, we have studied the esterification of cholesterol, retinol, and glycerides by the Fu5AH cell and by isolated membranes. Exposure of Fu5AH to cholesterol/phospholipid dispersions and 58-035 (greater than 100 ng/ml) for 24 h resulted in greater than 95% inhibition of cholesterol esterification while cellular free cholesterol increased slightly. Inhibition was also rapid; incorporation of [3H]oleate into cholesteryl [3H]oleate equaled only 12% of control value after 30 min with 58-035 at 5 micrograms/ml. In contrast, there was no decrease in [3H]oleate incorporation into phospholipids or diglycerides, nor was the esterification of [3H]retinol inhibited by 58-035. In microsomal fractions, acyl-CoA:cholesterol acyltransferase could be inhibited completely by 58-035, while activities of acyl-CoA: retinol acyltransferase and triglyceride synthesis proceeded at 75-100% of control values. These observations that 58-035 is highly selective allow the inference that acyl-CoA:cholesterol acyltransferase is a separate microsomal enzyme whose activity can be modulated independently from acyl-CoA:retinol acyltransferase and other cellular acyltransferases.  相似文献   

6.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

7.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

8.
The influence of membrane cholesterol on the activities of acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase was examined in three microsomal subfractions (RNA-rich, RNA-poor, and smooth) that had been enriched with cholesterol by incubation with mixed lipoproteins from hypercholesterolemic rabbit serum. Acyl-CoA: cholesterol acyltransferase activity was significantly stimulated in the three subfractions, particularly in the RNA-rich microsomal component. 3-Hydroxy-3-methylglutaryl-CoA reductase, on the other hand, was suppressed (30%) in only one (RNA-poor) of the three microsomal subfractions, despite a 1.4-fold increase in the concentration of membrane cholesterol. An attempt was made to distinguish between an effect based exclusively on an increase in available cholesterol substrate and an activation of acyl-CoA: cholesterol acyltransferase in RNA-rich microsomes enriched with cholesterol. An experimental design was devised so that substrate cholesterol was provided in the form of heated smooth microsomes and acyl-CoA: cholesterol acyltransferase was provided as a separate preparation in the form of RNA-rich microsomes. Appropriate controls were carried out to test for transfer of cholesteryl ester between the two sets of particles. The results suggested that cholesterol enhanced acyl-CoA: cholesterol acyltransferase activity by serving both as a substrate and as a non-substrate modulator.  相似文献   

9.
Acyl-CoA:cholesterol acyltransferase was found predominantly (85%) in RNA-rich microsomes, the rest being in RNA-poor and smooth microsomes. However, the esterified cholesterol concentration of smooth microsomes was 2-fold greater than that of RNA-rich microsomes, suggesting the possibility of an interaction between RNA-rich and smooth microsomes. The distribution of cholesteryl ester between microsome subfractions was examined after incubation of a mixture of RNA-rich and smooth microsomes with [1-14C]palmitoyl-CoA. Based upon specific acyl-CoA:cholesterol acyltransferase activities of the individual fractions, only 31 +/- 3% of the total cholesteryl ester radioactivity should have been found in the smooth component. However, the smooth microsomes contained 54 +/- 3% (p < 0.01) of the radioactive cholesteryl esters. The entrapment of radioactive cholesteryl ester in the smooth microsomes could not be accounted for by passive transfer of cholesteryl ester from RNA-rich microsomes to smooth microsomes. It is proposed that cholesterol in the smooth microsomal membranes may have been esterified by acyl-CoA:cholesterol acyltrasferase located on the surface of RNA-rich microsomes with the resulting cholesteryl ester retained in the smooth microsomes. This hypothesis was strengthened by the observation that acyl-CoA:cholesterol acyl-transferase was located on the cytoplasmic surface of the RNA-rich microsomal vesicle.  相似文献   

10.
We have enriched human fibroblasts with oleic acid, with linoleic acid and with eicosapentaenoic acid. The accumulation of cholesteryl esters in the cells and the rate of esterification of cholesterol by microsomal acyl-CoA:cholesterol acyltransferase (ACAT) were measured in these cells. Cholesteryl ester levels were lower in cells enriched with eicosapentaenoic acid compared with cells enriched with oleate or linoleate. We also observed significantly lower ACAT activities in the microsomes from fibroblasts enriched with the n-3 polyunsaturated fatty acids relative to cells enriched with oleic acid or linoleic acid. We suggest that the presence of n-3 polyunsaturated fatty acids might suppress cholesteryl ester accumulation and inhibit atherogenesis.  相似文献   

11.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

12.
The effects of treatment of rats with clofibrate, bezafibrate, and ciprofibrate on the hepatic metabolism of cholesterol were studied in rat liver microsomes. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity, regulating cholesterol biosynthesis, was unaffected by clofibrate and ciprofibrate and slightly decreased (20%) by bezafibrate. Also cholesterol 7 alpha-hydroxylase activity, governing bile acid biosynthesis, was unaffected by clofibrate and was reduced by 25-30% in the two other groups of rats. A major new finding was that all three fibric acid derivatives reduced ACAT (acyl-coenzyme A:cholesterol acyltransferase) activity, catalyzing the esterification of cholesterol, by 50-70%. The hepatic content of free and esterified cholesterol was determined in the bezafibrate-treated rats. The concentration of microsomal cholesteryl ester was about 60% lower in the treated rats compared to the controls whereas the concentration of total cholesterol was unchanged.  相似文献   

13.
The perturbation of cellular cholesteryl ester biosynthesis in glioblastoma C-6 cells by lidocaine was investigated. Lidocaine specifically inhibited the incorporation of radioactive oleic acid into cellular cholesteryl ester but had no significant effect on the incorporation of oleic acid into phosphatidylcholine. Oxygenated cholesterol-enhanced cholesteryl ester formation was less sensitive to lidocaine inhibition. Several other local anesthetics were compared. Lidocaine altered cholesteryl ester formation in time- and dose-dependent manners. Lidocaine was a powerful inhibitor initially and its potency declined with time. Lidocaine was capable of directly inhibiting acyl-CoA:cholesterol acyltransferase (ACAT) activity in broken cell homogenates. The lidocaine-mediated inhibition of cellular cholesteryl ester formation triggered an enhanced intracellular ACAT activity that was not fully expressed in the presence of lidocaine. The activation of ACAT activity by lidocaine might represent a compensatory mechanism by which the inhibitory effect of lidocaine was partially overcome with time.  相似文献   

14.
We investigated the incorporation of radioactive precursors into cholesteryl ester in cultured glioblastoma cells. It was found that polar cholesterol derivatives and exogenous cholesterol contained in lipoprotein complexes greatly enhanced intracellular cholesteryl ester formation. The direct transfer of the acyl moiety from acyl-CoA to free cholesterol was demonstrated in broken cell preparations. Further evidence of the existence of the acyl-CoA:cholesterol acyltransferase (ACAT) in glioblastoma cells came from the conversion of radioactive cholesterol to cholesteryl ester by glial cell homogenates. The characteristics of the enzymic assay were studied in detail. This enzymic activity was greatly enhanced in homogenates prepared from 7-ketocholesterol-treated cells. Thus, cells more active in cholesterol esterification possessed a higher ACAT activity. Progesterone inhibited cholesterol esterification in cell-free preparations. The marked inhibition of intracellular cholesteryl ester formation in intact cells by progesterone is a strong argument for the exclusive role of ACAT in glioblastoma cells. Similar properties of cholesteryl ester biosynthesis have been observed in neuroblastoma cells and primary brain cell cultures. In conclusion, the same enzyme is involved in cholesteryl ester biosynthesis in all neural cells. Neural and nonneural cells share many fundamental characteristics of cholesteryl ester formation.  相似文献   

15.
Feeding of ethanol in a liquid diet to male Wistar rats caused decreases in the hepatic cytosolic and mitochondrial [NAD+]/[NADH] ratios. This redox-state change was attenuated after 16 days of feeding ethanol as 36% of the total energy intake. Supplementation of the ethanol-containing liquid diet with Methylene Blue largely prevented the ethanol-induced redox state changes, but did not significantly decrease the severity of the hepatic lipid accumulation that resulted from ethanol ingestion. Methylene Blue did not affect body-weight gain, ethanol intake or serum ethanol concentrations in ethanol-fed rats, nor did the compound influence the hepatic redox state or liver lipid content of appropriate pair-fed control animals. These findings suggest that the altered hepatic redox state that results from ethanol oxidation is not primarily responsible for the production of fatty liver after long-term ethanol feeding in the rat.  相似文献   

16.
The influence of the acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitor, CL 277082, on macrophage cholesteryl ester accumulation in a rabbit carrageenan granuloma macrophage-foam cell model was studied. Diets were supplemented with 0.3% cholesterol and 6% peanut oil with or without the inhibitor (0.25%) for 4 weeks prior to granuloma induction, and macrophage-rich granuloma tissue was harvested 14 days after carrageenan injection. Serum cholesterol was monitored biweekly, and plasma lipoproteins were isolated terminally. Total, free and esterified cholesterol contents were measured in hepatic and granuloma tissue. In hepatic tissue, administration of CL 277082 resulted in an 80% reduction in the content of total cholesterol, a 37% decrease in free cholesterol, and a 90% decrease in esterified cholesterol. Similarly, in macrophage-rich granuloma tissue, total cholesterol content was decreased by 44%, and esterified cholesterol content by 61%, with no change in free cholesterol. Additionally, CL 277082 was shown to inhibit granuloma tissue ACAT activity by 45%, VLDL mass was decreased slightly, LDL mass increased 3.4-fold and HDL mass was similar in both the inhibitor-treated and control animals. CL 277082 resulted in a 57% decrease in VLDL cholesteryl ester content and a 4.5-fold increase in triacylglycerol. Cholesteryl ester content in LDL was decreased by 31% and LDL triacylglycerol was increased 5.2-fold, while the only change in HDL composition was a 3.5-fold increase in triacylglycerol. The reductions in both hepatic tissue and macrophage-rich granuloma tissue esterified cholesterol accumulation are considered to be due largely to cellular ACAT inhibition, and the altered distribution and composition of the plasma lipoproteins.  相似文献   

17.
A potentially important source of cholesterol secreted in bile is cholesterol-rich lipoproteins. However, the fate of the cholesterol carried in these lipoproteins after hepatic uptake has not been investigated. We harvested an apoE- and cholesterol-rich lipoprotein fraction (d 1.02-1.06 g/ml) from hypercholesterolemic rats and examined the acute effects of these lipoproteins on hepatic cholesterol metabolism, very low density lipoprotein (VLDL) secretion, and biliary lipid secretion. Administration of a lipoprotein bolus (20 mg of cholesterol) to rats resulted in a significant decrease in 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and a significant increase in acyl-coenzyme A:cholesterol acyltransferase activity over controls at 1 hr. Hepatic cholesteryl ester content increased 400% with no change in hepatic free cholesterol content or biliary cholesterol secretion. These cholesterol-rich lipoproteins delivered in the isolated perfused liver effected a fivefold increase in hepatic VLDL secretion with no change in composition. Therefore, cholesterol-rich lipoproteins do not acutely alter biliary cholesterol secretion. Rather, the majority of the cholesterol delivered to the liver in these lipoproteins is either esterified and stored as cholesteryl ester or resecreted as free and esterified cholesterol in hepatic VLDL.  相似文献   

18.
Cholesteryl ester synthesis by the acyl-CoA:cholesterol acyltransferase enzymes ACAT1 and ACAT2 is, in part, a cellular homeostatic mechanism to avoid toxicity associated with high free cholesterol levels. In hepatocytes and enterocytes, cholesteryl esters are secreted as part of apoB lipoproteins, the assembly of which is critically dependent on microsomal triglyceride transfer protein (MTP). Conditional genetic ablation of MTP reduces cholesteryl esters and enhances free cholesterol in the liver and intestine without diminishing ACAT1 and ACAT2 mRNA levels. As expected, increases in hepatic free cholesterol are associated with decreases in 3-hydroxy-3-methylglutaryl-CoA reductase and increases in ATP-binding cassette transporter 1 mRNA levels. Chemical inhibition of MTP also decreases esterification of cholesterol in Caco-2 and HepG2 cells. Conversely, coexpression of MTP and apoB in AC29 cells stably transfected with ACAT1 and ACAT2 increases cholesteryl ester synthesis. Liver and enterocyte microsomes from MTP-deficient animals synthesize lesser amounts of cholesteryl esters in vitro, but addition of purified MTP and low density lipoprotein corrects this deficiency. Enrichment of microsomes with cholesteryl esters also inhibits cholesterol ester synthesis. Thus, MTP enhances cellular cholesterol esterification by removing cholesteryl esters from their site of synthesis and depositing them into nascent apoB lipoproteins. Therefore, MTP plays a novel role in regulating cholesteryl ester biosynthesis in cells that produce lipoproteins. We speculate that non-lipoprotein-producing cells may use different mechanisms to alleviate product inhibition and modulate cholesteryl ester biosynthesis.  相似文献   

19.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   

20.
Fatty acid ethyl esters are a family of non-oxidative metabolites of ethanol present in many tissues after ethanol consumption. In this report we demonstrate the existence in human liver of an acyl-CoA: ethanol acyltransferase activity which may be responsible in part for the synthesis of these compounds in vivo. The effects of oleoyl-CoA and ethanol concentrations, presence or absence of bovine serum albumin and detergent, pH and enzyme concentration on this activity have been determined. Acyl-CoA: ethanol acyltransferase activity is localised in the membrane-bound fraction. Using inhibitors directed against related enzyme activities, it has been shown that the activity is not related to serine-dependent carboxylesterases or acyl-CoA: cholesterol acyltransferase, but that it may be associated with acyl-CoA hydrolase activity. We have also compared acyl-CoA: ethanol acyltransferase activity with fatty acid ethyl ester synthase activity in microsomes and cytosol from the same liver. Our data indicate that these activities are comparable in vitro (on a units/g liver basis), and suggest that both may be significant in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号