首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Correlation functions based on time averaging are not suited to study non-stationary point processes (e.g. the electric organ discharge activity of weakly-electric pulse fish). To overcome this problem, we present here a time-dependent correlation method, which can also be applied to study complicated correlations of moderately non-stationary point processes (e.g. neuronal spike trains). Indication of recurrence time aspects of the point processes provides a more complete representation of the correlation functions. In addition higher order correlations between two point processes are represented.  相似文献   

2.
In the nervous system, the representation of signals is based predominantly on the rate and timing of neuronal discharges. In most everyday tasks, the brain has to carry out a variety of mathematical operations on the discharge patterns. Recent findings show that even single neurons are capable of performing basic arithmetic on the sequences of spikes. However, the interaction of the two spike trains, and thus the resulting arithmetic operation may be influenced by the stochastic properties of the interacting spike trains. If we represent the individual discharges as events of a random point process, then an arithmetical operation is given by the interaction of two point processes. Employing a probabilistic model based on detection of coincidence of random events and complementary computer simulations, we show that the point process statistics control the arithmetical operation being performed and, particularly, that it is possible to switch from subtraction to division solely by changing the distribution of the inter-event intervals of the processes. Consequences of the model for evaluation of binaural information in the auditory brainstem are demonstrated. The results accentuate the importance of the stochastic properties of neuronal discharge patterns for information processing in the brain; further studies related to neuronal arithmetic should therefore consider the statistics of the interacting spike trains.  相似文献   

3.
《Biotechnic & histochemistry》2013,88(5-6):233-237
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

4.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

5.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

6.
Summary The mechanism of formation of neuronal spike trains on the basis of selective interaction between two processes called excitatory and inhibitory processes, is studied. The techniques of stationary point processes are used to study the delay and deletion models proposed by Ten Hoopen and Reuver. These models are further generalised by associating a random life time to the inhibitory events. The probability frequency function governing the interval between two consecutive response yielding excitatory events, is obtained for these models.  相似文献   

7.
Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons.  相似文献   

8.
 We propose a new method of studying the correlation between neuronal spike trains. This technique is based on the analysis of relative phase between two point processes. Relative phase here is defined as the relative timing difference between two spike trains normalized by the associated interspike interval of one cell. This phase measurement is intended to reveal the relative timing relationship between spike trains atdifferent firing rates. We apply this method to a numerical example and an example from two cerebellar neuronal spike trains of a behaving rat. The results are compared with classical cross-correlation analysis. We show that the technique can avoid some of the limitations of cross-correlation methods, reveal certain statistical dependencies that cannot be shown by cross correlation, and provide information as to the direction of influence between two spike trains. Received: 8 November 2001 / Accepted: 30 September 2002 / Published online: 24 January 2003 Correspondence to: Y. Chen (e-mail: chen@nsi.edu, Fax: + 1-858-626-2099) Acknowledgements. Research for this paper was supported by the Alafi Family Foundation and the Neurosciences Research Foundation.  相似文献   

9.
The caudo-cranially intermediate one-third of medullary dorsal region, the periaqueductal grey and the rostro-ventral portion of the midbrain tegmentum of adult chickens were studied in detail by means of the PAP-DAB procedure, to define further the main morphological features of the neuronal populations that in previous studies had shown VIP (Vasoactive Intestinal Polypeptide),-Somatostatin (SRIF)-, and Bombesin-like immunoreactivities. In the medulla, VIP-like immunoreactivity was detected within neuronal bodies and processes and extended down to the cervical spinal cord. SRIF-like immunoreactivity was seen only within nerve cell processes, at least a part of which could be sensitive fibre terminals. Bombesin-like immunoreactivity was observed only within neuronal processes. In the periaqueductal grey, all 3 immunoreactivities were detected within perikarya and neuronal processes, with a higher density cranially. In the rostro-ventral portion of the midbrain tegmentum, VIP-like and Bombesin-like immunoreactivities were detected (the latter being located somewhat more cranially) both in neuronal bodies and in processes. SRIF-like immunoreactivity was found in this region only in long neuronal processes.  相似文献   

10.
The distribution and actions of FMRFamide-related peptides (FaRPs) in the corpora cardiaca of the locust Locusta migratoria were studied. Antisera to FMRFamide and SchistoFLRFamide (PDVDHVFLRFamide) label neuronal processes that impinge on glandular cells in the glandular lobe of the corpora cardiaca known to produce adipokinetic hormones. Electron microscopic immunocytochemistry revealed that these FaRP-containing processes form synaptoid contacts with the glandular cells. Approximately 12% of the axon profiles present in the glandular part of the corpus cardiacum contained SchistoFLRFamide-immunoreactive material. Retrograde tracing of the axons in the nervus corporis cardiaci II with Lucifer yellow revealed 25–30 labelled neuronal cell bodies in each lateral part of the protocerebrum. About five of these in each hemisphere reacted with the SchistoFLRFamide-antiserum. Double-labelling immunocytochemistry showed that the FaRP-containing processes in the glandular lobe of the corpora cardiaca are distinct from neuronal processes, reacting with an antiserum to the neuropeptide locustatachykinin. The effect of the decapeptide SchistoFLRFamide and the tetrapeptide FMRFamide on the release of adipokinetic hormone I (AKH I) from the cells in the glandular part of the corpus cardiacum was studied in vitro. Neither the deca- nor the tetrapeptide had any effect on the spontaneous release of AKH I. Release of AKH I induced by the phosphodiesterase inhibitor IBMX, however, was reduced significantly by both peptides. These results point to an involvement of FaRPs as inhibitory modulators in the regulation of the release of adipokinetic hormone from the glandular cells.  相似文献   

11.
Studies of fiber guidance in invertebrates and at decision regions in vertebrates, show that three different sets of processes intervene. The first, is complex interactions of growing fibers with cells, often neuronal, that exist at strategic locations, at special borders or at decision points. The second is a modulation of growth cone motility, which manifests itself by a stop-start pattern of advance. The third, is response of growth cones to guidance cues, which are presumed to be distributed in graded or abrupt spatial distributions. In this paper, I will review the process of retinal fiber decussation from this point of view, with the aim of demonstrating how each of these processes contributes to fiber growth in this and other decision regions.  相似文献   

12.
13.
The distribution of gamma-aminobutyric acid (GABA) in surgical samples of human cerebellar cortex was studied by light and electron microscope immunocytochemistry using a polyclonal antibody generated in rabbit against GABA coupled to bovine serum albumin with glutaraldehyde. Observations by light microscopy revealed immunostained neuronal bodies and processes as well as axon terminals in all layers of the cerebellar cortex. Perikarya of stellate, basket and Golgi neurons showed evident GABA immunoreactivity. In contrast, perikarya of Purkinje neurons appeared to be negative or weakly positive. Immunoreactive tracts of longitudinally- or obliquely-sectioned neuronal processes and punctate elements, corresponding to axon terminals or cross-sectioned neuronal processes, showed a layer-specific pattern of distribution and were seen on the surface of neuronal bodies, in the neuropil and at microvessel walls. Electron microscope observations mainly focussed on the analysis of GABA-labelled axon terminals and of their relationships with neurons and microvessels. GABA-labelled terminals contained gold particles associated with pleomorphic vesicles and mitochondria and established symmetric synapses with neuronal bodies and dendrites in all cortex layers. GABA-labelled terminals associated with capillaries were seen to contact the perivascular glial processes, basal lamina and endothelial cells and to establish synapses with subendothelial unlabelled axons.  相似文献   

14.
In the present study, we investigated age-related differences in neuronal progenitors in the gerbil main olfactory bulb (MOB) using doublecortin (DCX), a marker for neuronal progenitors which differentiate into neurons in the brain. No difference in the number of neuronal nuclei (NeuN)-immunoreactive neurons was found in the MOB at variously aged gerbils. At postnatal month (PM) 1, DCX immunoreaction was detected in all layers of the MOB except for the olfactory nerve layer. At this time point, DCX-immunoreactive cells (neuronal progenitors) were very abundant; however, they did not have fully developed-processes. From PM 3, the number of DCX-immunoreactive neuronal progenitors was decreased with age. At PM 6, DCX-immunoreactive cells showed very well-developed processes. In western blot analysis, DCX protein level in the MOB was highest at PM 1. Thereafter, levels of DCX protein were decreased with age. In the subventricular zone of the lateral ventricle, the number of Ki-67-immunoractive cells (proliferating cells) was also significantly decreased with age. In addition, increases of α-synuclein-immunoreactive structures were observed in the MOB with age. These results suggest that decrease in DCX-immunoreactive neuronal progenitors and its protein levels in the MOB with age may be associated with reduction of cell proliferation in the SVZ and with an increase in α-synuclein in the MOB.  相似文献   

15.
16.
C Fink  F Morgan    L M Loew 《Biophysical journal》1998,75(4):1648-1658
A general method is described that takes advantage of the optical sectioning properties of a confocal microscope to enable measurement of both absolute and relative concentrations of fluorescent molecules inside cells. For compartments within cells that are substantially larger than the point spread function, the fluorescence intensity is simply proportional to the concentration of the fluorophore. For small compartments, the fluorescence intensity is diluted by contributions from regions outside the compartment. Corrections for this dilution can be estimated via calibrations that are based on the intensity distribution found in a computationally synthesized model for a cell or organelle that has been blurred by convolution with the microscope point spread function. The method is illustrated with four test cases: estimation of intracellular concentration of a fluorescent calcium indicator; estimation of the relative distribution between the neurite and soma of a neuronal cell of the InsP3 receptor on the endoplasmic reticulum; estimation of the distribution of the bradykinin receptor along the surface of a neuronal cell; and relative distribution of a potentiometric dye between the mitochondria and cytosol as a means of assaying mitochondrial membrane potential.  相似文献   

17.
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer??s disease, Parkinson??s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host??s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.  相似文献   

18.
The Golgi method, a well-known method used for staining whole dendrites and axonal trees of neurons, has been used widely for studying dendritic growth in vivo. Although detailed structural examination of neurons and their processes stained by the Golgi method has elucidated the complicated neuronal circuit, application of the method in cultured neurons has been unsuccessful to date.  相似文献   

19.
Recent research into depression has focused on the involvement of long-term intracellular processes, leading to abnormal neuronal plasticity in brains of depressed patients, and reversed by antidepressant treatment. Given a suggested decrease in noradrenergic transmission in depression, and an antidepressant induced increase in norepinephrine (NE) level, a possible role for NE in mediating alterations in neuronal morphology and plasticity was examined. Human neuroblastoma SH-SY5Y cells treated with 10-5 m NE presented an elongated granule-rich cell-body and increased number of neurites, when compared with non-treated cells. Moreover, cell survival was enhanced in the presence of NE, while proliferation was inhibited. The above effects suggest a role for NE in cell differentiation. Indeed similar effects on cell survival and neurite outgrowth were induced in SH-SY5Y cells by retinoic acid (RA), an established differentiating agent. Finally, NE treatment resulted in a progressive decrease in the pluripotent marker Oct4 and an increase in the neuronal growth cone marker, growth-associated-protein 43 (GAP-43). Alongside these effects, NE-treated cells presented alterations in the expression of 44 genes as observed in a neurobiology cDNA microarray. Among the altered genes, an increase in the expression level of two neurite-outgrowth promoting genes, neural cell adhesion molecule L1 and laminin, was confirmed by RT-PCR. Taken together, the results support a role for NE in processes of synaptic connectivity, and may point to a role for this neurotransmitter in mediating the suggested neuronal plasticity in depression and in antidepressant treatment.  相似文献   

20.
MicroRNAs (miRNAs) are key regulators of gene expression. In the brain, vital processes like neurodevelopment and neuronal functions depend on the correct expression of microRNAs. Perturbation of microRNAs in the brain can be used to model neurodegenerative diseases by modulating neuronal cell death. Currently, stereotactic injection is used to deliver miRNA knockdown agents to specific location in the brain. Here, we discuss strategies to design antagomirs against miRNA with locked nucleotide modifications (LNA). Subsequently describe a method for brain specific delivery of antagomirs, uniformly across different regions of the brain. This method is simple and widely applicable since it overcomes the surgery, associated injury and limitation of local delivery in stereotactic injections. We prepared a complex of neurotropic, cell-penetrating peptide Rabies Virus Glycoprotein (RVG) with antagomir against miRNA-29 and injected through tail vein, to specifically deliver in the brain. The antagomir design incorporated features that allow specific targeting of the miRNA and formation of non-covalent complexes with the peptide. The knock-down of the miRNA in neuronal cells, resulted in apoptotic cell death and associated behavioural defects. Thus, the method can be used for acute models of neuro-degeneration through the perturbation of miRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号