首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude and temporal nature of intracellular signaling cascades can now be visualized directly in single cells by the use of protein domains tagged with enhanced green fluorescent protein (eGFP). In this study, signaling downstream of G protein-coupled receptor-mediated phospholipase C (PLC) activation has been investigated in a cell line coexpressing recombinant M(3) muscarinic acetylcholine and alpha(1B) -adrenergic receptors. Confocal measurements of changes in inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)), using the pleckstrin homology domain of PLCdelta1 tagged to eGFP (eGFP-PH(PLCdelta)), and 1,2-diacylglycerol (DAG), using the C1 domain of protein kinase Cgamma (PKCgamma) (eGFP-C1(2)-PKCgamma), demonstrated clear translocation responses to methacholine and noradrenaline. Single cell EC(50) values calculated for each agonist indicated that responses to downstream signaling targets (Ca(2+) mobilization and PKC activation) were approximately 10-fold lower compared with respective Ins(1,4,5)P(3) and DAG EC(50) values. Examining the temporal profile of second messenger responses to sub-EC(50) concentrations of noradrenaline revealed oscillatory Ins(1,4,5)P(3), DAG, and Ca(2+) responses. Oscillatory recruitments of conventional (PKCbetaII) and novel (PKCepsilon) PKC isoenzymes were also observed which were synchronous with the Ca(2+) response measured simultaneously in the same cell. However, oscillatory PKC activity (as determined by translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate protein) required oscillatory DAG production. We suggest a model that uses regenerative Ca(2+) release via Ins(1,4,5)P(3) receptors to initiate oscillatory second messenger production through a positive feedback effect on PLC. By acting on various components of the PLC signaling pathway the frequency-encoded Ca(2+) response is able to maintain signal specificity at a level downstream of PKC activation.  相似文献   

2.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

3.
In human HeLa carcinoma cells, histamine causes a dose-dependent formation of inositol phosphates, production of diacylglycerol and a transient rise in intracellular [Ca2+]. These responses are completely blocked by the H1-receptor antagonist pyrilamine. In streptolysin-O-permeabilized cells, formation of inositol phosphates by histamine is strongly potentiated by guanosine 5'-[gamma-thio]triphosphate and inhibited by guanosine 5'-[beta-thio]diphosphate, suggesting the involvement of a GTP-binding protein. Histamine stimulates the rapid but transient formation of Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4. InsP accumulates in a much more persistent manner, lasting for at least 30 min. Studies with streptolysin-O-permeabilized cells indicate that InsP accumulation results from dephosphorylation of Ins(1,4,5)P3, rather than direct hydrolysis of PtdIns. The rise in intracellular [Ca2+] is biphasic, with a very fast release of Ca2+ from intracellular stores, that parallels the Ins(1,4,5)P3 time course, followed by a more prolonged phase of Ca2+ influx. In individual cells, histamine causes a rapid initial hyperpolarization of the plasma membrane, which can be mimicked by microinjected Ins(1,4,5)P3. Histamine-induced hyperpolarization is followed by long-lasting oscillations in membrane potential, apparently owing to periodic activation of Ca2+-dependent K+ channels. These membrane-potential oscillations can be mimicked by microinjection of guanosine 5'-[gamma-thio]triphosphate, but are not observed after microinjection of Ins(1,4,5)P3. We conclude that H1-receptors in HeLa cells activate a PtdInsP2-specific phospholipase C through participation of a specific G-protein, resulting in long-lasting oscillations of cytoplasmic free Ca2+.  相似文献   

4.
M Wakui  Y V Osipchuk  O H Petersen 《Cell》1990,63(5):1025-1032
Receptor-mediated inositol 1,4,5-trisphosphate (Ins-(1,4,5)P3) generation evokes fluctuations in the cytoplasmic Ca2+ concentration ([Ca2+]i). Intracellular Ca2+ infusion into single mouse pancreatic acinar cells mimicks the effect of external acetylcholine (ACh) or internal Ins(1,4,5)P3 application by evoking repetitive Ca2+ release monitored by Ca2(+)-activated Cl- current. Intracellular infusion of the Ins(1,4,5)P3 receptor antagonist heparin fails to inhibit Ca2+ spiking caused by Ca2+ infusion, but blocks ACh- and Ins(1,4,5)P3-evoked Ca2+ oscillations. Caffeine (1 mM), a potentiator of Ca2(+)-induced Ca2+ release, evokes Ca2+ spiking during subthreshold intracellular Ca2+ infusion. These results indicate that ACh-evoked Ca2+ oscillations are due to pulses of Ca2+ release through a caffeine-sensitive channel triggered by a small steady Ins(1,4,5)P3-evoked Ca2+ flow.  相似文献   

5.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

6.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

7.
In rat ventricular cardiomyocytes loaded with the fluorescent Ca2+ indicator Indo-1/AM, the delta opioid receptor agonist Leu-Enk caused Cai oscillations and abolished the caffeine-induced Cai transient. During superfusion of cardiomyocytes with the specific opioid antagonist naloxone, Cai is not affected by Leu-Enk and the caffeine-triggered Cai transient is preserved. In parallel experiments with cardiac myocytes, the delta opioid agonist increased the intracellular level of Ins (1,4,5) P3 by about 4 times above the control value. Such an effect was completely antagonized by naloxone. Thus, Leu-Enk induces depletion of Ca2+ from the SR by a receptor-mediated mechanism which appears to involve an increase in the intracellular level of Ins (1,4,5) P3.  相似文献   

8.
Stimulation of many nonexcitable cells by Ca2(+)-mobilizing receptor agonists causes oscillating elevations of the intracellular free Ca2+ concentration ((Ca2+]i), rather than a continuous increase. It has been proposed that the frequency at which [Ca2+]i oscillates determines the biological response. Because the occurrence of [Ca2+] oscillations is observed together with endogenous inositol polyphosphate (InsPs) production or following InsPs application, we injected Xenopus laevis oocytes with InsPs and monitored Ca2(+)-activated Cl- currents as an assay of [Ca2+]i. Microinjection of the poorly metabolizable inositol trisphosphate (InsP3) derivatives inositol 2,4,5-trisphosphate (Ins(2,4,5)P3) and inositol 1,4,5-trisphosphorothioate (Ins(1,4,5) P3S3) induced [Ca2+]i oscillations. The frequency at which [Ca2+]i oscillated increased with the injected dose, indicating that the frequency-generating mechanism lies distal to InsP3 production and that generation of oscillations does not require either oscillation of InsP3 levels or InsP3 metabolism. Injections of high doses of Ins(1,4,5)P3 or Ins(2,4,5)P3 inhibited ongoing oscillations, whereas Ca2+ injections decreased the amplitude of Ins(2,4,5)P3-induced oscillations without altering their frequency. Injections of the Ins(1,4,5)P3 metabolite inositol 1,3,4,5-tetrakisphosphate also caused oscillations whose frequency was related to the injected dose, although inositol tetrakisphosphate injection induced an increase in the cellular level of Ins(1,4,5)P3. The results suggest a multicomponent oscillatory system that includes the InsP3 target as well as a Ca2(+)-sensitive step that modulates amplitude.  相似文献   

9.
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1 receptor antagonist), U-73122 (a phospholipase C inhibitor), 2-APB (an inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor blocker), thapsigargin (a Ca2+-ATPase inhibitor), and BAPTA/AM (an intracellular Ca2+ chelator), but not by DMPX (an A2 receptor antagonist). However, forskolin, epinephrine, and isoproterenol, inducers of cAMP accumulation, failed to release ATP. Adenosine increased intracellular Ca2+ concentrations that were strongly blocked by CPT, U-73122, 2-APB, and thapsigargin. Moreover, adenosine enhanced accumulations of Ins(1,4,5)P3 that were significantly reduced by U-73122 and CPT. These data suggest that adenosine induces the release of ATP by activating an Ins(1,4,5)P3 sensitive-Ca2+ pathway through the stimulation of A1 receptors.  相似文献   

10.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), an intracellular second messenger produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate, interacts with cytoplasmic membrane structures to elicit the release of stored Ca2+. Ins(1,4,5)P3-induced Ca2+ mobilization is mediated through high affinity receptor binding sites; however, the biochemical mechanism coupling receptor occupation with Ca2+ channel opening has not been identified. In studies presented here, we examined the effects of naphthalenesulfonamide calmodulin antagonists, W7 and W13, and a new selective antagonist, CGS 9343B, on Ca2+ mobilization stimulated by Ins(1,4,5)P3 in neoplastic rat liver epithelial (261B) cells. Intact fura-2 loaded cells stimulated by thrombin, a physiological agent that causes phosphatidylinositol 4,5-bisphosphate hydrolysis and Ins (1,4,5)P3 release, responded with a rise in cytoplasmic free Ca2+ levels that was dose dependently inhibited by W7(Ki = 25 microM), W13 (Ki = 45 microM), and CGS 9343B (Ki = 110 microM). Intracellular Ca2+ release stimulated by the addition of Ins(1,4,5)P3 directly to electropermeabilized 261B cells was similarly inhibited by pretreatment with anti-calmodulin agents. W7 and CGS 9343B, which potently blocked Ca2+/calmodulin-dependent protein kinase, had no significant effect on protein kinase A or C in dose range required for complete inhibition of Ca2+ mobilization. Ca2+ release channels and Ca2+-ATPase pump activity were also unaffected by calmodulin antagonist treatment. These results indicate that calmodulin is tightly associated with the intracellular membrane mechanism coupling Ins(1,4,5)P3 receptors to Ca2+ release channels  相似文献   

11.
The ability of epidermal growth factor (EGF) and angiotensin II to stimulate production of inositol trisphosphate and mobilize intracellular Ca2+ in hepatocytes was compared using quin2 fluorescence to monitor changes in Ca2+ levels and high performance liquid chromatography to resolve the inositol trisphosphate (InsP3) isomers. Both EGF and angiotensin II stimulated an increase in free intracellular Ca2+ concentration ([Ca2+]i) as well as a rapid increase in the production of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Concentrations of angiotensin II which gave a rise in [Ca2+]i equivalent to that seen with maximal doses of EGF produced an equivalent increase in Ins(1,4,5)P3 formation. Both EGF and angiotensin II stimulated the formation of the Ins(1,3,4)P3 and inositol 1,3,4,5-tetrakisphosphate isomers. The formation of the Ins(1,3,4)P3 isomer lagged behind production of Ins(1,4,5)P3 but eventually reached higher levels in the cell. The initial rise in [Ca2+]i and InsP3 levels stimulated by EGF and angiotensin II was not affected by reducing the external Ca2+ concentration below 30 nM with an excess of [ethylenebis(oxyethylenenitrilo)] tetraacetic acid. Treatment of hepatocytes for 30-180 s with 1 micrograms/ml phorbol 12-myristate 13-acetate prior to the addition of EGF blocked the EGF-stimulated production of Ins(1,4,5)P3 and the increase in [Ca2+]i. Phorbol 12-myristate 13-acetate attenuated the production of Ins(1,4,5)P3 generated by angiotensin II over the concentration range of 10(-10) to 10(-8) M; however, the Ca2+ signal was only inhibited at the 10(-10) M dose of angiotensin II. Treatment of rats with pertussis toxin for 72 h prior to isolating hepatocytes blocked the ability of EGF to increase Ins(1,4,5)P3 and Ins(1,3,4)P3 but did not inhibit the ability of any concentration of angiotensin II to stimulate formation of InsP3 or inositol tetrakisphosphate. The observation that pertussis toxin selectively abolishes EGF-stimulated inositol lipid breakdown suggests that EGF and angiotensin II use different mechanisms to activate phospholipase C in hepatocytes.  相似文献   

12.
Despite no evidence for desensitization of phospholipase C-coupled gonadotropin-releasing hormone (GnRH) receptors, we previously reported marked suppression of GnRH-mediated Ca(2+) responses in alphaT3-1 cells by pre-exposure to GnRH. This suppression could not be accounted for solely by reduced inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) responses, thereby implicating uncoupling of Ins(1,4,5)P(3) production and Ca(2+) mobilization (McArdle, C. A., Willars, G. B., Fowkes, R. C., Nahorski, S. R., Davidson, J. S., and Forrest-Owen, W. (1996) J. Biol. Chem. 271, 23711-23717). In the current study we demonstrate that GnRH causes a homologous and heterologous desensitization of Ca(2+) signaling in alphaT3-1 cells that is coincident with a rapid (t((12)) < 20 min), marked, and functionally relevant loss of type I Ins(1,4,5)P(3) receptor immunoreactivity and binding. Furthermore, using an alphaT3-1 cell line expressing recombinant muscarinic M(3) receptors we show that the unique resistance of the GnRH receptor to rapid desensitization contributes to a fast, profound, and sustained loss of Ins(1,4,5)P(3) receptor immunoreactivity. These data highlight a potential role for rapid Ins(1,4,5)P(3) receptor down-regulation in homologous and heterologous desensitization and in particular suggest that this mechanism may contribute to the suppression of the reproductive system that is exploited in the major clinical applications of GnRH analogues.  相似文献   

13.
In WRK1 cells vasopressin stimulates Ins(1,4,5)P3 accumulation and mobilizes intracellular calcium. These two phenomena are transient and exhibit similar time-courses. Experiments performed on intact cells or membrane preparations demonstrate that calcium may also stimulate an accumulation of inositol phosphates. This suggests a possible positive feedback regulation of the primary accumulation of Ins(1,4,5)P3 induced by vasopressin. In order to test such a possibility we studied the vasopressin-induced Ins(1,4,5)P3 accumulation, where intracellular calcium mobilization is artificially suppressed by incubating the cells with EGTA in the presence of ionomycin. Under these conditions the accumulation of Ins(1,4,5)P3 induced by 1 microM vasopressin is inhibited by around 50% when measured 5 s after stimulation. This inhibition is not due to an alteration of the VIa vasopressin receptor binding properties, a reduction of the amount of substrate available for the phospholipase C, a stimulation of the Ins(1,4,5)P3 5-phosphatase or an activation of the Ins(1,4,5,)P3 kinase. It is more likely the consequence of the suppression of calcium wave generated by Ins(1,4,5)P3 which may in its turn stimulate a phospholipase C. Different arguments favour this hypothesis: (1) calcium at an intracellular physiological concentration (0.1-1 microM) is able to stimulate a phospholipase C; (2) artificially increasing the [Ca2+]i inside the WRK1 cell induces an accumulation of Ins(1,4,5)P3; and (3) the time-course of the inhibition of Ins(1,4,5)P3 accumulation induced by an EGTA/ionomycin treatment correlates well with that of the calcium mobilization. Altogether these results suggest that Ins(1,4,5)P3 accumulation in WRK1 cells may result from two distinct mechanisms: a direct vasopressin receptor-mediated PLC activation which is independent of calcium and a calcium-mediated PLC activation related to the intracellular calcium mobilization.  相似文献   

14.
In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulated adrenal glomerulosa and other cells, Ins(1,3,4,5)P4 has been implicated as an additional second messenger that may act in conjunction with Ins(1,4,5)P3 to elicit Ca2+ mobilization. In the present study, an independent action of Ins(1,3,4,5)P4 was observed in bovine adrenal microsomes. Heparin, a sulphated polysaccharide which binds to Ins(1,4,5)P3 receptors in several tissues, inhibited both the binding of radiolabelled Ins(1,4,5)P3 and its Ca2(+)-releasing activity in adrenal microsomes. In contrast, heparin did not inhibit the mobilization of Ca2+ by Ins(1,3,4,5)P4, even at doses that abolished the Ins(1,4,5)P3 response. Such differential inhibition of the Ins(1,4,5)P3- and Ins(1,3,4,5)P4-induced Ca2+ responses by heparin indicates that Ins(1,3,4,5)P4 stimulates the release of Ca2+ from a discrete intracellular store, and exerts this action via a specific receptor site that is distinct from the Ins(1,4,5)P3 receptor.  相似文献   

15.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

16.
Coordination of intercellular Ca2+ signals is important for certain hepatic functions including biliary flow and glucose output. Prostaglandins, such as PGF2alpha and PGE2, may modify these hepatocyte functions by inducing Ca2+ increase, but very little is known about the organization of the Ca2+ signals induced by these agonists. We studied Ca2+ signals induced by PGF2alpha and PGE2 in fura-2 AM-loaded hepatocyte doublets. Even though both prostaglandins induced Ca2+ oscillations, neither PGF2alpha nor PGE2 induced coordinated Ca2+ oscillations in hepatocyte doublets. Gap junction permeability (GJP), assessed by fluorescence recovery after photobleaching, showed that this absence of coordination was not related to a defect in GJP. Inositol (1,4,5)trisphosphate [Ins(1,4,5)P3] assays and the increase in Ins(1,4,5)P3 receptor sensitivity to Ins(1,4,5)P3 observed in response to thimerosal suggested that the absence of coordination was a consequence of the very small quantity of Ins(1,4,5)P3 formed by these prostaglandins. Furthermore, when PGE2 and PGF2alpha were added just before norepinephrine, they favored the coordination of Ca2+ signals induced by norepinephrine. However, GJP between hepatocyte doublets was strongly inhibited by prolonged (>or=2 h) treatment with PGF2alpha, thereby preventing the coordination of Ca2+ oscillations induced by norepinephrine in these cells. Thus, depending on the time window, prostaglandins, specially PGF2alpha, may enhance or diminish the propagation of Ca2+ signals. They may therefore contribute to the fine tuning of Ca2+ wave-dependent functions, such as nerve stimulation, hormonal regulation of liver metabolism, or bile secretion, in both normal and pathogenic conditions.  相似文献   

17.
Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.  相似文献   

18.
In a permeable neoplastic rat liver epithelial (261B) cell system, inositol 1,3,4,5-tetrakisphosphate--Ins(1,3,4,5)P4--induces sequestration of Ca2+ released by inositol 2,4,5-trisphosphate--Ins(2,4,5)P3; a non-metabolized inositol trisphosphate (InsP3) isomer--and Ca2+ added exogenously in the form of CaCl2. Studies were performed to identify the Ca2+ pool filled after Ins(1,3,4,5)P4 treatment. Both Ins(2,4,5)P3 and inositol 1,4,5-trisphosphate--Ins(1,4,5)P3--dose-dependently release Ca2+ from permeable 261B cells--Ins(1,4,5)P3 having a threefold greater potency--but differ in that Ca2+ released by Ins(1,4,5)P3 is readily sequestered, while the Ca2+ released by Ins(2,4,5)P3 is not. Maximal release of Ca2+ by 6 microM Ins(2,4,5)P3 blocked the action of Ins(1,4,5)P3, demonstrating that these two isomers influence the same intracellular Ca2+ pool through a shared membrane receptor. Addition of 2 microM Ins(2,4,5)P3 to discharge partially the Ca2+ pool reduced the amount of Ca2+ released by a maximal dose of Ins(1,4,5)P3 (2 microM). Ins(1,3,4,5)P4 combined with Ins(2,4,5)P3 produced a Ca2+ release and sequestration response, which replenished the InsP3-sensitive pool as indicated by a recovery of full Ca2+ release by 2 microM Ins(1,4,5)P3. Induction of Ca2+ sequestration by Ins(1,3,4,5)P4 occurred dose-dependently, with a half-maximal response elicited at a dose of 0.9 microM. Further studies of the effect of Ins(1,3,4,5)P4 apart from the influence of Ins(2,4,5)P3 using a model in which the Ca2+ levels are raised by an exogenous addition of CaCl2 showed that Ins(1,4,5)P3 released twice the amount of Ca2+ from the storage pool following Ins(1,3,4,5)P4-induced Ca2+ sequestration. These results demonstrate that the Ca2+ uptake induced by Ins(1,3,4,5)P4 preferentially replenishes the intracellular Ca2+ storage sites regulated by Ins(1,4,5)P3 and Ins(2,4,5)P3.  相似文献   

19.
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

20.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号