首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.  相似文献   

2.
Nucleosome packing in chromatin as revealed by nuclease digestion.   总被引:3,自引:1,他引:2       下载免费PDF全文
Chromatin DNA of rat thymus nuclei was cleaved by Serratia marcescens endonculease. The fragments have been examined by polyacrylamide gel electrophoresis under denaturing conditions. The results obtained are interpreted to mean that the internucleosomal DNA is cleaved by the endonuclease into fragments which are multiples of 10 nucleotides. The 10 nucleotide periodicity in fragmentation of internucleosomal DNA is independent of the presence of histone H1 and is likely to be determined by the interaction of this DNA stretch with the histone core of nucleosomes. Such interaction implies a close association between the nucleosomes in the chromatin thread. Quasi-limit chromatin digest (50--55% of DNA hydrolysis) contains undegraded DNA fragments with length of up to 1000 nucleotides or more. A part of this resistant DNA consists of single-stranded fragments or contains single stranded regions. These data may be accounted for by a very compact nucleosome packing in the resistant chromatin in which one of the DNA stands is more accessible to the endonuclease action.  相似文献   

3.
H Lowman  M Bina 《Biopolymers》1990,30(9-10):861-876
Previous studies demonstrated 16 well-defined nucleosome locations (A-P) on a tandemly repeated prototype 234 base pair (bp) mouse satellite repeat unit. We have aligned the A-P fragments to search for DNA sequence elements that might contribute to nucleosome placement at these positions. Our results demonstrate a strikingly regular, uninterrupted, periodic pattern for the AA dinucleotide occurrences along the entire length of the aligned fragments. The periodicity of the AA occurrences is about 9.7 bp. The pattern exhibits a local minimum at position 74, near the nucleosome dyad axis of symmetry. Other dinucleotides--including AC: GT, CA: TG, and CC: GG--are also placed periodically, but their patterns of occurrence are less regular and less frequent than AA. The calculated spacings between consecutive preferred nucleosome locations on mouse satellite DNA are nearly identical, corresponding to multiples of 9.7 bp. The correlation between the periodicity of dinucleotide occurrences and the average spacing of nucleosome positions suggests that the preferred nucleosome locations recur at intervals that may correspond to the DNA helical repeat in the mouse satellite nucleosomes, and that the histone octamers sample (or slip along) the duplex in steps of 9.7 bp during nucleosome formation on mouse satellite DNA.  相似文献   

4.
The folding of the nucleosome chain into a chromatin fiber modulates DNA accessibility and is therefore an important factor for the control of gene expression. The fiber conformation depends crucially on the interaction between individual nucleosomes. However, this parameter has not been accurately determined experimentally, and it is affected by posttranslational histone modifications and binding of chromosomal proteins. Here, the effect of different internucleosomal interaction strengths on the fiber conformation was investigated by Monte Carlo computer simulations. The fiber geometry was modeled to fit that of chicken erythrocyte chromatin, which has been examined in numerous experimental studies. In the Monte Carlo simulation, the nucleosome shape was described as an oblate spherocylinder, and a replica exchange protocol was developed to reach thermal equilibrium for a broad range of internucleosomal interaction energies. The simulations revealed the large impact of the nucleosome geometry and the nucleosome repeat length on the compaction of the chromatin fiber. At high internucleosomal interaction energies, a lateral self-association of distant fiber parts and an interdigitation of nucleosomes were apparent. These results identify key factors for the control of the compaction and higher order folding of the chromatin fiber.  相似文献   

5.
6.
Nucleosome positioning is an important mechanism for the regulation of eukaryotic gene expression. Folding of the chromatin fiber can influence nucleosome positioning, whereas similar electrostatic mechanisms govern the nucleosome repeat length and chromatin fiber folding in vitro. The position of the nucleosomes is directed either by the DNA sequence or by the boundaries created due to the binding of certain trans-acting factors to their target sites in the DNA. Increasing ionic strength results in an increase in nucleosome spacing on the chromatin assembled by the S-190 extract of Drosophila embryos. In this study, a mutant lac repressor protein R3 was used to find the mechanisms of nucleosome positioning on a plasmid with three R3-binding sites. With increasing ionic strength in the presence of R3, the number of positioned nucleosomes in the chromatin decreased, whereas the internucleosomal spacings of the positioned nucleosomes in a single register did not change. The number of the positioned nucleosomes in the chromatin assembled in vitro over different plasmid DNAs with 1-3 lac operators changed with the relative position and number of the R3-binding sites. We found that in the presence of R3, nucleosomes were positioned in the salt gradient method of the chromatin assembly, even in the absence of a nucleosome-positioning sequence. Our results show that nucleosome-positioning mechanisms are dominant, as the nucleosomes can be positioned even in the absence of regular spacing mechanisms. The protein-generated boundaries are more effective when more than one binding site is present with a minimum distance of approximately 165 bp, greater than the nucleosome core DNA length, between them.  相似文献   

7.
8.
A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the DNA segments is described by the Debye-Hückel approximation. Nucleosome core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution, whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the mass density is significantly lower than the measured value. The theoretical characteristics of a fiber with a repeat length of 192 bp where DNA and nucleosomes are connected at the core particle are in agreement with the experimental values. Systems without a stem and a repeat length of 217 bp do not form fibers.  相似文献   

9.
Nucleosomal DNA is digested to repeats of 10 bases by exonuclease III   总被引:19,自引:0,他引:19  
D Riley  H Weintraub 《Cell》1978,13(2):281-293
Nucleosomes were treated with increasing concentrations of exonuclease III (Exo III) from E. coli. At low levels of Exo III, the heterogeneous distribution of monomers (with associated DNA fragments ranging in size between 140 and 170 bp) is "trimmed" down to a discrete core of 140 bp. The "trimming" of monomers to 140 bp results from a 3' exonucleolytic digestion accompanied by a 5' clipping activity which is specific for the conformation of internucleosomal DNA. At higher concentrations of Exo III, the enzyme digests the 140 bp "trimmed" nucleosome core from both 3' ends without associated 5' nuclease activity. Most striking is the observation that the fragments produced during such a digestion display discrete single-stranded lengths that are integer multiples of 10 bases. For some dimer nucleosomes, Exo III can digest as many as 200 bases from at least one 3' end and produce a 10 base interval ladder from about 400 bases down to 180 bases. This suggests that the enzyme can traverse the length of an entire nucleosome without destroying whatever structural features are necessary to produce a 10 base DNA ladder.  相似文献   

10.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

11.
Nuclease digestion studies of DNA bound to the histone-like protein HU show that cuts in each strand of the DNA double helix are made with a periodicity of 8.5 base-pairs. By contrast, similar digestions of DNA in eukaryotic nucleosomes show a repeat of 10.4 base-pairs. This and other results (including circular dichroism studies) are consistent with the proposal that the pitch of the DNA double helix in the HU complex is reduced from a repeat length of 10.5 to 8.5 base-pairs per helical turn. Simultaneously, the DNA in the HU-DNA complex containing two dimers of HU per 60 base-pairs has its linking number decreased by 1.0 turn per 290 base-pairs. From these changes it is calculated that HU imposes a DNA writhe of 1.0 per three to four monomers of HU. The results suggest a model in which DNA is coiled in left-handed toroidal supercoils on the HU complex, having a stoichiometry resembling that of the half-nucleosome of eukaryotic chromatin. An important distinction is that HU complexes can restrain the same number of DNA superhelical turns as eukaryotic nucleosomes, yet the DNA retains more negative torsional tension, just as is observed in prokaryotic chromosomes in vivo. Another distinction is that HU-DNA complexes are less stable, having a dissociation half-life of 0.6 min in 50 mM-NaCl. This last property may explain prior difficulties in detecting prokaryotic nucleosome-like structures.  相似文献   

12.
Poly (ADP-ribose) polymerase, a nuclear protein-modifying enzyme, binds to the internucleosomal linker region of chromatin, although it modifies certain core nucleosomal histones in addition to histone H1. The activity per unit of DNA chromatin changes with the nucleosome repeat number. It reaches a maximum on chromatin of 8-10 nucleosomes in length. As the complexity of chromatin with respect to nucleosome repeat number and compactness increases, a decline and stabilization of specific activity is noted. The difference in specific activity is maintained through resedimentation and dialysis of particles. It does not appear due to differences in polymer chain length or differential degradation of poly (ADP-ribose). The data suggest a relationship between ADP-ribosylation and chromatin organization and vice versa.  相似文献   

13.
14.
Nucleosomes are the basic elements of chromatin structure. Polyamines, such as spermine and spermidine, are small ubiquitous molecules absolutely required for cell growth. Photoaffinity polyamines bind to specific locations in nucleosomes and can change the helical twist of DNA in nucleosomes. Acetylation of polyamines reduces their affinity for DNA and nucleosomes, thus the helical twist of DNA in nucleosomes could be regulated by cells through acetylation. I suggest that histone and polyamine acetylation act synergistically to modulate chromatin structure. On naked DNA, the photoaffinity spermine bound preferentially to a specific ‘TATA’ sequence element, suggesting that polyamines may be involved in the unusual chromatin structure in this region. Further work is needed to test whether the specificities shown by photoaffinity polyamines are also shown by cellular polyamines; such experiments are now feasible.  相似文献   

15.
DNase I was used to probe the higher order chromatin structure in whole nuclei. The digestion profiles obtained were the result of single-stranded cuts and were independent of pH, type of divalent ion and chromatin repeat length. Furthermore, the protection from digestion of the DNA at the entry/exit points on the nucleosome was found to be caused not by the H1/H5 histone tails, but by the compact structure that these proteins support. In order to resolve symmetry ambiguities, DNase I digestion fragments over several nucleosome repeat lengths were analysed quantitatively and compared with computer simulations using combinations of the experimentally obtained rate constants (some of which were converted to 0 to simulate steric protection from DNase I digestion). A clear picture of precisely defined, alternating, asymmetrically protected nucleosomes emerged. The linker DNA is inside the fibre, while the nucleosomes are positioned above and below a helical path and/or with alternating orientation towards the dyad axis. The dinucleosomal modulation of the digestion patterns comes from alternate protection of cutting sites inside the nucleosome and not from alternating exposure to the enzyme of the linker DNA.  相似文献   

16.
Effects of DNA sequence and conformation on nucleosome formation   总被引:1,自引:0,他引:1  
A simple theoretical analysis of the free energy balance controlling nucleosome formation shows that the specific effects of different DNA sequences and/or conformations observed in vitro are mainly due to their different elastic properties. A calculation of the elastic free energy required to fold DNA on histone octamers yields quantitative results rationalizing the experimental findings provided that: (i) the average helical repeat of DNA on nucleosomes is greater than 10.2 bp per turn, and (ii) poly[dG.dC] adopts an A-type conformation.  相似文献   

17.
Since 1929 the concept that proteins are built from subunits of certain standard size (Svedberg 1929) has been revisited several times, each time with a new demonstration that, indeed, there are certain preferred protein sizes. According to recent estimates the overrepresented sizes are close to multiples of 125 amino acid (aa) residues for eukaryotes and 150 residues for prokaryotes. To explain these preferences, a hypothesis is suggested, and quantitatively developed, on the recombinational nature of this regularity. The protein-coding sequences are assumed to evolve at some early stage via recombinational events—insertions of DNA circles of a certain optimal size. The contour lengths of the protein-coding DNA circles had to be simultaneously divisible by three and, to minimize torsional constraint, by the DNA helical repeat. With these two conditions satisfied, the calculated contour lengths of the DNA circles, 250–500 base pairs (bp), turn out to correspond well to known optimal DNA circularization sizes and to the predicted range of the protein sequence subunit sizes: 80–170 as residues, which covers experimentally observed values. The subunit size is found to be strongly influenced by the helical repeat of DNA. The sizes 125 and 150 as are derived when the corresponding helical repeats of DNA are set within fractions of promilles from the 10.54 by/turn value. This fits to the experimentally estimated mean for natural mixed DNA sequences, 10.53–10.57 by/turn. The suggested recombinational mechanism thus not only gives a qualitative explanation for the observed underlying order in the protein sequences but also quantitatively links the observed protein sequence sizes with the optimal DNA circularization size and with the helical repeat of DNA. It also offers a versatile molecular model of early protein evolution by fusion and insertion of preexisting proteins of standard subunit sizes.  相似文献   

18.
A major question in chromatin involves the exact organization of nucleosomes within the 30-nm chromatin fiber and its structural determinants of assembly. Here we investigate the structure of histone octamer helical tubes via the method of iterative helical real-space reconstruction. Accurate placement of the x-ray structure of the histone octamer within the reconstructed density yields a pseudoatomic model for the entire helix, and allows precise identification of molecular interactions between neighboring octamers. One such interaction that would not be obscured by DNA in the nucleosome consists of a twofold symmetric four-helix bundle formed between pairs of H2B-α3 and H2B-αC helices of neighboring octamers. We believe that this interface can act as an internucleosomal four-helix bundle within the context of the chromatin fiber. The potential relevance of this interface in the folding of the 30-nm chromatin fiber is discussed.  相似文献   

19.
Cruciforms persist in reconstituted minichromosomes, as revealed by cleavage with specific nucleases and hybridization with synthetic oligonucleotides. Relaxation by topoisomerase I suggests that cruciforms are located mainly on internucleosomal DNA and that their persistence on minichromosomes may be due to kinetic effects. The analysis of the kinetic behaviour of cruciforms in minichromosomes shows a definite velocity of reabsorption with respect to stable cruciforms in supercoiled naked DNA. An explanation based on suppression of the untwisting of linker DNA due to adjacent nucleosomes is proposed.  相似文献   

20.
The hierarchical packaging of DNA into chromatin within a eukaryotic nucleus plays a pivotal role in both the accessibility of genomic information and the dynamics of replication. Our work addresses the role of nanoscale physical and geometric properties in determining the structure of chromatin at the mesoscale level. We study the packaging of DNA in chromatin fibers by optimization of regular helical morphologies, considering the elasticity of the linker DNA as well as steric packing of the nucleosomes and linkers. Our model predicts a broad range of preferred helix structures for a fixed linker length of DNA; changing the linker length alters the predicted ensemble. Specifically, we find that the twist registry of the nucleosomes, as set by the internucleosome repeat length, determines the preferred angle between the nucleosomes and the fiber axis. For moderate to long linker lengths, we find a number of energetically comparable configurations with different nucleosome-nucleosome interaction patterns, indicating a potential role for kinetic trapping in chromatin fiber formation. Our results highlight the key role played by DNA elasticity and local geometry in regulating the hierarchical packaging of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号